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Abstract— Type-specific dendritic arborization patterns dic-
tate synaptic connectivity and are fundamental determinants
of neuronal function. We exploit the morphological stereotypy
and relative simplicity of the Drosophila nervous system to
model the diverse dendritic morphologies of individual motor
neurons (MNs) to understand underlying principles of synaptic
connectivity in a motor circuit. The genetic tractability of
Drosophila allows us to label single MNs with green fluorescent
protein (GFP) and serially reconstruct identifiable MNs in
3D with confocal microscopy. Our computational approach
aims at the robust segmentation of the MN volumes and the
simultaneous partitioning into their compartments, namely the
soma, axon and dendrites. We use the idea of co-segmentation,
where every image along the z-axis (depth) is clustered using
information from ‘neighboring’ depths. As appearance we use
a 3D extension of Haar features and for the shape we define
an implicit representation of the segmentation domain.

I. INTRODUCTION

Normal locomotive behavior is fundamentally determined
by precise patterns of MN connectivity that are dictated
by the selective connection of motor axons with muscle
targets as well as specific dendritic input from presynaptic
neurons. In the vertebrate spinal cord, MNs are organized
into columns based on axonal projection patterns and within
these columns, groups of MNs that target individual muscles
are clustered into MN pools [7], [8]. Different MN pools
elaborate distinct dendritic arborization patterns and respond
to sensory stimulation with different latencies, demonstrating
that the selectivity of synaptic input is directly influenced by
the differential patterning of dendrites in the spinal cord [13].

Therefore, determining how different MN subtypes pattern
and organize their dendrites in 3D space will be a crucial step
toward understanding how motor circuits are assembled to
control locomotion.

Drosophila larvae as a model. The Drosophila embryonic
central nervous system (CNS) comprises the developing
brain and ventral nerve cord (VNC) (Fig. 1A). The VNC,
which can be considered functionally orthologous to the
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Fig. 1. (A) The whole larva with GFP expressed by the OK371-Gal4 driver
[10] (all MNs shown); the panel also shows the CNS (brain and VNC) in
relation to the whole animal. (B) Magnification of the VNC in the red box
in (A); the magenta box illustrates a hemisegment. (C) Using MARCM we
generate single MN clones which we analyze. (D) Single MN image stack
depicts a noisy neuron volume; our goal is to segment the neuron from its
surroundings and partition it in its compartments: soma, axon and dendrites.

mammalian spinal cord, is segmentally reiterated and bi-
laterally symmetrical with respect to the ventral midline.
There are approximately 400 neurons, including an estimated
38 MNs, within each hemisegment (or half-segment) of the
VNC (Fig. 1B). Abdominal hemisegments in the embryo
comprise 30 stereotyped body wall muscles, each of which
is innervated by one or more of the 38 MNs. The muscle
innervation pattern of individual MNs is further highly
stereotyped making embryonic MNs uniquely identifiable
[6]. During larval development, dendrites of these abdominal
MNs undergo considerable growth and dendritic branching
is dramatically increased, likely reflecting extensive changes
in synaptic connectivity that are required for more complex
larval behaviors such as the peristaltic movements required
for normal locomotion. Whether larval MNs project their
dendrites to stereotyped regions of the VNC to create a
connectivity map is unclear.
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Fig. 2. Datasets for modeling individual neurons: the image stacks, one
for each channel (green: neuron images; red: CNS reference images), with
the grayscale images resulting from intensity summation along the z-axis.

II. IMAGING AT SINGLE-CELL RESOLUTION

Previous efforts to visualize morphology of single MNs
have relied on dye-backfilling methods such as DiI. DiI is a
lipophilic dye that is taken up by the axon and diffuses along
the cell membrane to reveal neuronal morphology. However,
this technique is limited in that neurons can only be labeled
one at a time and dye-labeled neurons are more prone to
photobleaching and phototoxicity. Furthermore, dye-labeling
methods are not compatible with long-term sample preser-
vation, limiting the use of secondary markers.

To overcome these limitations, we use mosaic analysis
with a repressible cell marker (MARCM) [9], a genetic
technique that allows us to label and image individual MNs
(Fig. 1C). The use of fluorescent proteins allows for high-
resolution in vivo imaging with minimal photobleaching,
reduced phototoxicity and enhanced labeling of the neuronal
membrane. Although labeled MNs generated by MARCM
can be imaged live in the intact animal, muscle contraction
by larva hinders the acquisition of confocal images through
consecutive z positions. The brain and VNC are therefore
exposed by dissection and the tissue is fixed with formalde-
hyde before immunostaining with antibodies directed against
mCD8 (green channel) and a secondary marker, Fasciclin II
(FasII) (red channel). FasII labels axon fascicles that divide
the VNC into distinct territories and provides a frame of
reference in which to map the relative positions of the MN
soma and dendrites [5]. The entire morphology of single
MNs is then imaged with laser scanning confocal microscopy
that produces the image stacks to be analyzed (Fig. 2).

Our goal is to understand how connectivity patterns are
formed within a normal motor circuit and to determine
whether a ‘connectivity map’ can be deduced by estima-
tions of neuronal morphology. Furthermore, developing a
3D model standard for different MN subtypes will allow
for unbiased determinations of differences between neuronal
morphologies in a wild-type and mutant brain. This will
greatly facilitate our investigation into how different MN
subtypes pattern their dendritic arbor to establish synaptic
connectivity, which remains an understudied yet important
aspect of motor circuit formation. Lastly, understanding
the normal process of MN development will ultimately be

Fig. 3. Examples of the Haar masks in the 3D domain: {gray =
−1, white = +1}.

important in devising strategies to repair or restore MN
connectivity after spinal cord injury or disease.

III. NEURON MORPHOLOGY ESTIMATION

The neuron volume does not provide the necessary infor-
mation for the desired morphology-based MN classification.
According to the study in [4], the morphological features that
uniquely describe individual MN subtypes are the relative
positions between soma, axon, and dendrites, along with the
shapes and extends in the 3D space of these compartments.
To calculate such features we need to partition the neuron
volume into these three morphologically distinct subvolumes.
From Figs. 1, 2 it is apparent that while intensity determines
the neuron volume, shape is what describes the compartment
label: soma is an ellipsoid, axon is an elongated structure and
dendrites have an arbitrary shape. However, high variability
in morphology, even for MNs of the same subtype, does
not allow for partitioning using existing shape-constrained
models, e.g., Active Shape Models [1].

Our approach is based on the principle of co-segmentation,
mainly used for simultaneous segmentation of a collection
of images [3], [2]. It exploits the idea of sharing knowledge
for the targets appearance throughout the input set, instead
of using training samples. Here the collection of images
is the image stack. We use co-segmentation to partition
each image into soma, axon and dendrites, and estimate the
3D morphology from the 2D results. We over-segment all
images and we merge the resulting regions using shape and
appearance. To obtain more robust intensity information, we
use Haar-like features [12] in a 3D manner as shown in
Fig. 3, with fixed mask size. In our experiments, and for
1024 × 1024 × 30 dataset size, we used 25 × 25 × 5 Haar
masks.

We assume intensity continuity/smoothness along the z-
axis. If a region of interest exists at a given depth, then
part of it should also exist at neighboring depths. We
use this as a soft constraint to account for progressively
appearing/disappearing regions over depth, which depicts the
arbitrary 3D shapes of the neuron compartments. We also
assume that the neuron soma is (partially) visible in the first
image of the stack to facilitate the shape description below.

A. Shape representation

We define a representation of 2D shape sets using distance
functions [11], which incorporates information about the
relative positions of the neuron compartments. Let Ω be
the (2D) image domain and C = {Ck}Kk=1 is the result of
an intensity-based over-segmentation of Ω, where Ck is the
k-th segment and K is the total number of segments. For
calculating C we use the K-means algorithm, although other
methods (e.g., watershed and graph-cuts) can also be used.
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Fig. 4. Shape representation of a random segmentation set C. First row
(from left to right): collapsed stack image; image at a random depth; an over-
segmentation set C, with the reference segment Cs in red and its directed
distance (vector field) Φs

C superimposed. Second row: the distance functions
Φk

C for every segment Ck 6= Cs.

We consider the soma region, the least variable structure,
as the reference segment. Soma regions exist in the first
images of the stacks. Let Cs ⊂ C denote the soma segment.
If soma is over-segmented and/or there are regions from other
compartments present at the given depth, then Cs is chosen
as the segment without holes and whose boundary best fits
a circle. The directed (vector) distance function Φs

C of the
reference segment describes its shape but also the relative
positions of all other segments {Ck}Kk=1,k 6=s,

Φs
C = d(x,Bs),∀x ∈ Ω (1)

where d(x,Bs) is the vector distance of every x ∈ Ω from the
reference segment boundary Bs. The magnitude and direction
of Φs

C represent the relative position of every x ∈ Ω and
therefore of every segment (Fig. 4). Also, the shape of each
segment Ck, k 6= s, is described with a distance function ΦkC
independently from the set C\Ck,

ΦkC =

{
d(x,Bk), ∀x ∈ Ck, k 6= s

0, otherwise
, (2)

where d(x,Bk) is the distance of every x ∈ Ck from the
segment boundary Bk (Fig. 4). Then, the neuron region at
a specific depth, given a segmentation outcome C, can be
defined as a vector field,

ΦC =

[
Φs
C ,

K∑
k=1,k 6=s

ΦkC

]
, (3)

given that Ci∩Cj = ∅, i 6= j, i.e., for a given x ∈ Ω, ΦiC(x)
and ΦjC(x) cannot both have non-zero values.

B. Co-segmentation

Let I(z) be an image in the stack at depth z, and H be the
total number of Haar features [12] (Fig. 3) estimated from
the images I(z±δz), δz = 1, . . . , (m − 1)/2, with m being
the z-dimension of each Haar mask. We calculate H over-
segmentation sets C(z)

h , one for each feature (left panel of Fig.
5). Our goal is to combine the results of all H features from
the m depths around z to obtain the final segmentation C̃(z)

for I(z). C̃(z) must contain segments of only three classes
(soma, axon and dendrites); the first two have distinctive
shapes as we describe above. Therefore, co-segmentation is
driven by shape as defined in eqs. (1)-(3). The objective is
the loss function to be minimized,

E = εc + εδz + εs, (4)

where the three penalty terms are defined as follows.

(a) The inconsistencies over the set {C(z)
h }Hh=1, i.e., disagree-

ment ∆k(i, j) between the outcomes of all pairs i, j of
features for all segments k,

εc =

K∑
k=1

[ H∑
(i,j)=1,i6=j

∆k(i, j)

]
, (5)

where ∆k(i, j) =
∫

Ω

[
C
k,(z)
i ∪Ck,(z)j −Ck,(z)i ∩Ck,(z)j

]
(x)dx

for a given k, and C
k,(z)
i is the k-th segment of the i-th

segmentation set at depth z.

(b) If Φ
(z)
h is the shape of the segmentation outcome C(z)

h ,
for the h feature at depth z, we penalize shape variations for
each feature h over neighboring depths,

εδz =

H∑
h=1

[ z+δz∑
(i,j)=z−δz,i 6=j

[
Φ

(i)
h −Φ

(j)
h

]]
, (6)

(c) For each segment k, let Mk be an H × H structure
(hypermatrix), where Mk(i, j) is the shape histogram of
C
k,(z)
i ∪ Ck,(z)j , calculated using the non-negative areas of

the distance functions in eq. (2) [11]. Let qc and qe be the
normalized shape histograms of an average soma (circle-like)
and axon (elongated structure), estimated manually from ex-
isting datasets. The Bhattacharyya distances D[Mk(i, j), qc],
D[Mk(i, j), qe] indicate shape similarity of Mk(i, j) with
the two shape priors [11]. We penalize shape dissimilarities
from the target shapes as,

εs =

K∑
k=1

H∑
(i,j)=1,i6=j

D[Mk(i, j), qc]D[Mk(i, j), qe], (7)

The method in steps. Given an image stack {I(z)}Zz=1:
(i) For every I(z) obtain initial segments C(z)

h for each Haar
feature h separately.
(ii) Locate the reference segment (soma) by calculating the
union of all reference segments in the sets C(z)

h .
(iii) Calculate the shapes Φ

(z)
h .

(iv) Calculate the cost terms εc, εs.
(v) Calculate the cost εδz considering neighboring depths
[z−δz, z+δz] (repeat (i)-(iii) for z±δz in the first iteration
only).
(vi) Calculate E .
(vii) Merge segments from the sets C(z)

h that yield lower
values of

∑H
(i,j)=1,i6=j D[Mk(i, j), qc]D[Mk(i, j), qe].

(viii) Update sets C(z)
h and repeat (iii) - (vii).

(ix) Repeat (i)-(viii) for Iz+1.

The right panel in Fig. 5 illustrates the result of steps (i)-
(viii) for an image at a given depth.

Finally, to obtain the 3D morphology of the neuron,
by combining the segmentation results across all depths
in the given stack, we adopt the Delaunay-based surface
reconstruction method in [14].

IV. RESULTS

Our MARCM experiments and imaging studies have thus
far yielded over 150 high-resolution image stacks of 28
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Fig. 5. Co-clustering using three Haar features over three successive images
in the stack. Left: individual over-clustered features. Right: co-segmentation
result.

unique larval MN subtypes [4]. We analyzed 35 randomly
chosen datasets depicting 4 MN subtypes (MN1,9,15,16). In
all datasets, the estimated and manually labeled compartment
subvolumes largely coincide, which is sufficient for the
desired morphology-based MN recognition, as shown in Fig.
6: the estimated relative positions between the compartments
coincide with the findings in [4].

However, we validate the accuracy of our method and
define as error the percentage (%) of misclassified pixels with
respect to the compartment area (2D) and volume (3D),

error =
|ground truth− estimated|

ground truth
(8)

Here we report [average, worst-case] classification errors
from two comparison approaches.
(i) We manually traced soma, axon and dendrites boundaries
for each image in a given stack and compared the resulting
areas with our partitioning results: soma ⇒ [2.3, 6.8]; axon
⇒ [4.1, 5.7]; dendrites ⇒ [11.3, 20.4].
(ii) We interpolated the manually traced boundaries over
depth, calculated the 3D volume, and compared it with our
estimated volume after the 3D reconstruction: soma ⇒ [5.1,
7.9]; axon ⇒ [6.3, 7.2]; dendrites ⇒ [10.8, 18.7].

As anticipated, the segmentation of the soma yields lower
errors, due to the relatively homogeneous intensity, its
smooth variation over depth, and the small shape variation.
Also, the intensity inhomogeneities and random shapes of
the dendrites make their accurate segmentation more chal-
lenging. The higher errors we report for the estimation of
the volumes are mainly due to the fact that we applied
the 3D reconstruction without data-driven constraints across
different depths. This is an issue that we will tackle in our
future work.

Finally, we validated the stability of our solution for differ-
ent initializations; the plot in Fig. 7 shows the segmentation
errors for the three compartments over 100 different initial
over-segmentations with k-means.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The morphological properties of a neuron have a direct
influence on patterns of synaptic connectivity. We developed
a method for the reconstruction of the neuron morphology, in
order to create 3D models standard for different MN subtypes
in the Drosophila nervous system. Such models will serve
as a predictive tool for the assembly of motor circuits in
the normal and mutant brain. Our future work includes the
extension of our co-segmentation framework in 3D with the

Fig. 6. Indicative segmentation results for a given dataset. Left: segmen-
tation of a random image in the stack; the CNS center is also illustrated
with a dashed red line. Right: 3D results using our co-segmentation with
the method in [14].

Fig. 7. Solution stability for different segment over-segmentation initial-
izations: the average segmentation errors calculated from eq. (8) for each
neuron compartment separately. The x-axis corresponds to repetitions of the
k-means algorithm that produce different segments as initialization for our
method.

introduction of local 3D shape and appearance smoothness
constraints.
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