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Motion Flow Analysis in Cell Videos
using a Multi-Level Clustering Method
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Abstract— Analyzing motion flow of cells is an important task
for many biomedical applications. It is a challenging problem
due to noise in images and uncontrolled motion of cells. In
this study, a method to find regions of organized motion and
direction of flow is proposed. Since dense optical flow methods
might fail due to homogeneous regions and irregular motion
patterns, the technique involves analyzing trajectories of strong
corner features. Trajectories are clustered to find dominant
flow patterns for different regions of the frame, where a multi-
level clustering scheme is followed. Experiments show that
the technique gives accurate results for detecting region and
direction of flow.

I. INTRODUCTION

Characterizing the motion of cells in tissue and in culture
systems is an important task to consider in biomedical
research. Some biological applications include the study
of cell migration and its variations under different culture
conditions or drug actions [2], [12]. The motion patterns can
be used as distinguishable features to indicate, for instance,
insufficient blood flow, blockages, or even the presence of a
tumor.

Analysis of cell motion consists of tracking the location
of each cell over entire sequence of images and extracting
qualitative and quantitative features. The motion tracks of
the cells could provide the raw data necessary to answer
questions about the patterns of cell motion and organization.
A lot of research has been done on object tracking [11], and
many specifically have been working on cell tracking [7], [6].
Some studies are focused on manual or interactive computer-
assisted tracking [5]. However in most cases manual tracking
is not feasible due to the high number of cells in a single
scene and is a tiresome task if dealing with a large number
of cells during long periods in order to acquire statistically
robust results. Moreover, for some scenarios where cells
merge together and form a tissue, it is hard to detect
individual cell objects (Figure 1).

Although there is a tremendous amount of work on crowd
flow analysis [1], [9], there are few studies on motion flow
analysis of cells [8], [3]. Wu et al [9] proposed a method to
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Fig. 1. An example frame from one of the sequences. Bright points are
the markers put into the sample. Big yellow square is a zoomed in version
of the small patch. Once the cells merge together and form a tissue, it is
hard to see individual cells even by eye.

detect chaotic invariants using a crowd flow representation
based on trajectories. Ali et al [1] used dense optical flow and
introduced Lagrangian dynamics to perform crowd flow seg-
mentation. Compared to human crowd datasets, cell videos
contain more noise and non-organized motion. Due to noise
and a large variety of homogeneous regions, optical flow
computation might not be robust. Furthermore, some regions
on a frame might contain irregular motion patterns, which
requires a detailed interpretation of motion flow. Souvenir
et al [8] presented a method to estimate the cell flow using
Radial Flow Transform filters on videos of natural killer T
cells.

In this study, rather than tracking individual cell objects,
we are interested in finding regions of organized motion and
direction of flow in cell videos. Our approach involves track-
ing of strong corner features and clustering trajectories to
find different motion patterns. The contribution of the paper
is as follows: (i) dominant motion patterns in cell videos
are found without detection and tracking of individual cells,
(ii) clustering trajectories is performed in a multi-level way
by using features such as entropy of direction distribution
of displacement vectors and velocity. The experiments show
that proposed technique is successful on finding the direction
of dominant motion on a given region.
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II. METHOD

Proposed method consists of three stages. First corner
points, that are more convenient for tracking are extracted
for the first frame and tracked independently throughout the
sequence. Computed trajectories are then input to a multi-
level clustering scheme. The appropriate clustering method
depends on two important observations. First, a sequence
might contain irregular motion patterns as well as organized
motion flow in a specific direction. Second, there might
be different groups of cells moving in different directions.
Hence, at the first level of clustering we first classify the
trajectories as irregular and organized motion patterns. At
the next level, regular trajectories are clustered based on the
motion direction. Finally, local flow direction is computed
using velocity vectors of the trajectories.

A. Feature Detection and Tracking

After cells form a tissue, they move together in an orga-
nized way. Although remaining individual cells might appear
on the sample, they join the underlying tissue after executing
some fast and abrupt movements. Thus, instead of detecting
and tracking single cell objects in videos, we detect important
feature points and track throughout the sequence. This helps
us analyze the flow behavior.

Initially, strong corner points are detected on the first
frame. For each pixel (z,y), n X n window with pixels

P1,P2,--.Pn2 are considered and minimum eigenvalue of
the matrix
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is computed where I, (p;) and I, (p;) are the components of
the gradient at pixel p; in x and y directions respectively.
After non-maxima suppression on the obtained eigenvalue
map, N points with the largest eigenvalues are chosen.
Next, each feature point is tracked independent from the
others using Lucas-Kanade (LK) tracker [4]. Since, tracker
might have failed for some frames, outlier trajectories are
eliminated by thresholding on the displacement between
frames.

B. Clustering Trajectories

Based on the main observation, a sequence might contain
irregular motion patterns and organized motion in different
directions, we follow a multi-level clustering approach. At
the first level of the process, we divide the trajectories into
two groups, irregular and organized motion patterns. Since
we are interested in the transition of organized motion,
trajectories with regular motion are clustered according to
the direction of motion at the next level.

In order to detect regular motion patterns, we compute the
direction histogram of displacement vectors for each trajec-
tory. Assume {p§, pi,...pt_,} is trajectory ¢ consisting of
2D positions p! € R? for F' frames. Displacement vectors
are xi,x5,...x%_; € R? where

p, for Vk € {1,2,...F — 1} (2)
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For regular motion, we expect to have the displacement
vectors in the same direction. Thus, direction distribution
should be peaky. On the other hand, we expect to have sparse
distribution for trajectories with irregular motion pattern.
Entropy of direction distribution is a good measure for
identifying trajectories with organized motion. So, for all
trajectories entropy of direction distribution is computed.
Trajectories with larger entropy values are classified as
irregular.

Let /x! is the direction of ‘" displacement vector in
the trajectory t. Then, a normalized 360 bin histogram H®
for all directions /x|, /x%,... Zx% | is computed for the
trajectory. Entropy n® of trajectory ¢ is approximated as

360
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where H is the value at i** bin of the histogram H?.

Second level of the clustering method involves more
analysis on regular trajectories. Because, we might observe
multiple cell flows in different directions in a video, velocity
direction of trajectories is used as a feature for clustering. We
assume a constant velocity model for each trajectory. So, for
trajectory ¢ we have

pL=pi_, +Vv +w forVk e {1,2,...F} “)

where vt € R? is the constant velocity of trajectory ¢, and
w! € R? is Gaussian noise with mean 0 and covariance 3;.
Maximum likelihood estimate for velocity of the trajectory
is

F-1
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As a result we will have velocity vectors {v1,v2,...vT}
for all T regular trajectories. We apply medoid-shift algo-
rithm [10] with cosine distance metric to cluster the velocity
vectors. Note that, tolerance on the direction difference is
input to the medoid-shift algorithm, which affects the number

of clusters for the sequence.

C. Finding Flow Direction

In this section, we will explain how we find the flow
direction on a region. Among the trajectories in a given
region, first the dominant cluster of trajectories that appears
the most is found. Let set S contains the indexes of trajec-
tories inside a given region R, and we found £ clusters for
the sequence. Suppose S = Uf:l Sk where S; contains the
trajectory indexes that belong to cluster 7. Dominant cluster
cg in the region R is cg = argmax|S;| where |S| indicates

7
the number of elements in the set S. Proportion of trajectories
pr that belong to the dominant cluster in the region R is
computed as follows

o 1Sl
g

Next mean of the velocities for the trajectories, that are inside
the region and belong to dominant cluster is computed and

(6)
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TABLE I
EXPERIMENT RESULTS

Percentage | Cosine
Sequence 1 Reg%on 1 94% 0.96
Region 2 86% 0.89
Sequence 2 | Region 1 81% 0.97
Region 1 100% 0.99
Sequence 3 | Region 2 83% 0.91
Region 3 58% 0.92
Region 1 90% 0.97
Sequence 4 | Region 2 92% 0.99
Region 3 56% 0.99

assigned as the flow direction ppr of the region R.
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III. EXPERIMENTS AND RESULTS

The images of primary Human Corneal Fibroblasts
(HPCFs) are acquired with a TE2000-E Nikon inverted
microscope. Multiple images are acquired from nine different
overlapping regions on the sample and then stitched together
to create a 3 x 3 mosaic'. This creates a frame with size
2808 by 3759 pixels. A mosaic image is taken in every six
minutes.

The experiments are carried out on 4 video sequences
each of them with around 200 frames. Since, it is hard to
see the motion patterns for every region of the video by
eye, an expert annotated some regions where motion is more
visible. For each delineated region, direction of the motion is
indicated with a vector. Therefore, the results are evaluated
only for the annotated regions. Proportion of trajectories
of the dominant cluster (pr) and flow direction (up) are
computed for delienated regions. The output direction vector
is compared with the hand labeled velocity vector for the
region. The results are reported in Table I. Each sequence
has multiple annotated regions. Percentage column shows the
proportion of trajectories referring to the most popular cluster
among all trajectories in the region. The column titled with
Cosine indicates the cosine of the angle between manually
annotated motion vector and computed flow direction. The
results show that even though there are outlier trajectories in
a region, it finds the flow direction close to manually labeled
direction.

Figure 2 shows the direction histograms for displacement
vectors of irregular and organized trajectories. Notice the

IThis causes noise especially on the overlapping regions.
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Fig. 2. Direction histograms of displacement vector for irregular (top)
and organized (bottom) motion patterns. Entropy values for top and bottom
histograms are 3.26 and 0.62 respectively.

sparse histogram for irregular trajectory. Based on entropy
values for all histograms, median is selected as the threshold
for separating two classes.

Final clustering result for two of the sequences is displayed
in Figure 3. ITrregular trajectories might be due to abrupt
motion of single cell objects or resisting flows in opposite di-
rections. A demo video for sequence 1 can be seen at http:
/ /www.youtube.com/watch?v=H_oFo65z4ew.

Estimated motion directions and annotated vectors are
displayed for two sequences in Figure 4. Although there are
outlier trajectories in the annotated regions, the technique
is able to find the motion direction based on the dominant
cluster. Notice also that regular trajectories appear more
on the annotated region which shows the strength of our
clustering method in computing trajectories.

IV. CONCLUSIONS AND FUTURE WORKS

In this study, a novel method to detect dominant motion
patterns in cell videos is proposed. Proposed technique is
based on analyzing trajectories and uses a multi-level clus-
tering methodology. The experiments show that, the method
is successful in finding regions with regular motion patterns
and direction of flow. The cells are less organized at the first
days of image acquisition. The researchers are also interested
in detecting the time where the cells merge together and show
an organized motion. In the future, we want to propose an
index, indicating the amount of cell organization. Also, we
would like to extend our work to detecting proliferating and
merging cells.
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