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Abstract— The current paper proposes a novel automated
patient couch removal method on Computed Tomography (CT)
images. Patient couch is often considered to be an unnecessary
artifact especially when 3D rendered techniques are used. The
method is based on measuring similarity between selected axial
slices and the assumption that the bed object is constant on
different slices. Due to the weight of the patient the couch could
bend which is identifiable as sagittal movement on consecutive
axial slices. Therefore the method focuses on finding this
movement after an initial segmentation. According to initial
validation performed on real medical data, our method is an
effective tool to remove patient couch without user interaction.

I. INTRODUCTION

Computed tomography (CT) is one of the most widely

used morphological modalities in radiology and nuclear

medicine [1], [3]. The CT visualization is done with both 2D

and 3D rendering techniques depending on the type of the

daily routine [5], [8], [9]. Due to the CT imaging technology

patient couch is always present on reconstructed images.

Since the patient couch does not hold useful information for

evaluation, it is an unnecessary artifact on medical viewers.

Furthermore, due to the nature of some rendering techniques

like 3D Volume Rendering (VR) [2], [4] and Maximum

Intensity Projection (MIP) [5], [6] the patient couch is even

disturbing when it hides important anatomical information

(see Fig. 4). Therefore an automated patient couch removal

is required.

The segmentation of the patient couch is a challenging

task, since the patient may touch the couch hence simple

threshold methods cannot separate them (see Fig. 1) [6].

Furthermore the couch may move along the axial slices due

to non-uniform distribution of the patient’s weight over it

[3], [9] (see Fig. 2).

Considering the difficulties mentioned above, our goal was

to propose an automated method which copes with both

patient couch movements and couch - patient connections.

We built on the idea of detecting slightly changing objects

over the axial slices and we assumed that body regions

change faster than the shape of the couch.

II. MATERIALS AND METHODS

A. Patient images

Forty reconstructed anonymized human whole body CT

images were collected in Digital Imaging and Communica-

tion in Medicine (DICOM) format acquired by 4 different
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camera vendors (10 for all vendors). All 3D reconstructed

images consisted an ordered series of 2D axial slices having

equal pixel resolution (in our case 512 × 512).

B. Methods

We assumed that the shape of the couch was very similar

over axial slices, but little movements could occur (see Fig.

2) and patient could even touch the couch (see Fig. 1).

The method had five main steps: feature extraction, initial

couch localization, couch movement detection, couch mask

generation and couch removal.

1) Feature extraction: The method built on the high

similarly of couch shape over the axial slices, therefore lower

body similarities had to be assured. Since body regions were

also very similar between neighboring slices, the feature

extraction step had to decrease the body region similarity

compared to the similarity of the couch. This was achieved

by not processing all slices but only a subset of them as

follows:

Let us denote I as the input CT with k slices, furthermore

Sj ∈ I as the jth axial slice of I where 0 ≤ j < k. Let us

denote Mp ⊆ I a subset containing Si slices chosen from I

with normal distribution as defined by ( 1).

Mp =
{

S0, Sq, S2q, . . . , S⌊ k−1

q ⌋q

}

(1)

where q =
⌊

1
p

⌋

. Therefore every qth slice was collected

to Mp. Based on initial trials p = 0.1 was an appropriate

choice.

Let us denote (x, y) ∈ N
2 a pixel coordinate inside of

Si ∈ Mp where Si(x, y) represents the value at the xth row

and yth column in Si. Multiple low-high cut was performed

on all Si ∈ Mp slices defined as ( 2).

∀(x, y) : Sc
i (x, y) = min (max (Lc, Si(x, y)) , Hc) (2)

where Lc = −400 and Hc = 400 are low and high cut

values according to standard Hounsfield Scale [10]. The Lc

and Hc threshold values were determined by initial trials.

The multiple cut was necessary to remove artifacts (inlays,

implants, background noise, etc.) from the CT that could

mislead our method. The result of the cut was collected to

M c
p where M c

p = {Sc
i |Si ∈ Mp}.

Multiple correlation was performed among all Sc
i ∈ M c

p

slices to create a two dimensional C correlation slice where

C(x, y) was defined by ( 3).
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C(x, y) =

n
∑

a=−n

n
∑

b=−n

∏

Sc
i
∈Mc

p

(Sc
i (x + a, y + b) − mi(x, y))

(3)

where ∀(x, y), ∀i | Sc
i ∈ M c

p : mi(x, y) was defined as

( 4).

mi(x, y) =

n
∑

a=−n

n
∑

b=−n

(

Sc
i (x + a, y + b)

(2n + 1)2

)

(4)

where the correlation disk size was 2n + 1 which deter-

mined a (2n + 1)
2

sized pixel area. According to initial trials

n = 4 was chosen.

2) Initial couch localization: A binary thresh was applied

on C correlation slice to generate a B binary mask slice as

defined by ( 5).

∀(x, y) : B(x, y) =

{

0 if C(x, y) = 0
1 otherwise

(5)

Although the feature extraction step decreased the sim-

ilarity of body regions, artifacts remained on the binary

image. In order to remove these artifacts, the disjunct regions

(having value 1) of B were labeled in Br with unique values

(see Fig. 3). Then the ws weight of each s region was

calculated by summing the distances of each pixel of the

region from the center of the slice to identify the heaviest

one as defined by ( 6).

ws =
∑

Br(x,y)=s

d(x, y)e (6)

where d(x, y) is the distance of (x, y) from the geometric

center of the slice. According to initial trials e = 4 was an

appropriate choice. The label value with the heaviest weight

was chosen. All other values in Br were changed to 0.

The Br image was an initial mask, in which misclassifi-

cation of the values was possible. In order to decrease the

possibility of patient couch border exclusion, a morphologi-

cally dilated Bd slice was generated from Br [7] as defined

by ( 7) (see Fig. 3).

Bd(x, y) = max
x−n≤i≤x+n

y−n≤j≤y+n

(Br(i, j)) (7)

The number of positive values in image Bd was counted

and stored in b ∈ N value.

3) Couch movement detection: Current step determined

the relative shifting value δi = (k, l) (δi ∈ Z
2) between

Sc
i−1 ∈ M c

p and Sc
i ∈ M c

p which gave the best fit of these

slices as defined by ( 8).

δi = arg min
a,b

∑

x,y

(

Sc
i−1(x, y) − Sc

i (x + a, y + b)
)2

b
(8)

where Bd(x, y) > 0, −φ ≤ a, b ≤ φ and a, b ∈ Z.

The φ value represented the maximal expected shift in each

Fig. 1. An axial CT slice where the patient couch is connected with the
patient (left). The magnified regions of the red rectangles (right).

Fig. 2. Six averaged axial slices representing body and couch changes over
the axial slices. (left). The magnified view of the red rectangle represents
slight patient couch movements (right).

direction. Based on initial trials φ = 2 was an appropriate

choice. Note that δ0 = (0, 0) as the first slice was the

reference slice.

4) Couch mask generation: According to the determined

δi which represented a relative shifting between Sc
i ∈ M c

p

and Sc
i−1 ∈ M c

p consecutive slices, ǫi ∈ Z
2 was defined

representing the shifting relative to the first Sc
0 slice by ( 9).

∀i|Sc
i ∈ M c

p : ǫi =

i
∑

j=0

δi (9)

Using the shifting values of ǫi, St
i slices were generated

from applying the ǫi translation on the corresponding Sc
i ∈

M c
p slice.

By having the translated St
i slices were the corresponding

couch regions were overlapping, a final D mask slice was

generated by applying multiple correlation on St
i images as

defined by ( 3).

The D slice was then threshed as shown in ( 5).

Since the D mask slice could have represented a hollow

patient couch mask, it was filled in by vertical sweeping lines

(see Fig. 3).

5) Couch removal: Based on the D mask slice, ∆j ∈ Z
2

shifting values were determined for all Sj ∈ I slices. For

all jth slices the enclosing i =
⌊

j

q

⌋

and i + q sample slice

indices were determined to identify ǫi and ǫi+q . The final

shifting coordinates of ∆j were linearly interpolated by the

values in ǫi and ǫi + q as defined by ( 10).

∆j =
(i + q − j)ǫi + (j − i)ǫi+q

q
(10)

A Dj mask slice was created for all Sj ∈ I slices by

shifting D mask with corresponding ∆j . The final I ′ image

was created by ( 11).
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(B) (Bd) (D)

Fig. 3. The initial B mask slice representing labeled regions (left), the filtered and dilated B
D slice mask (middle) and the filled D slice mask (right)

Fig. 4. Different volume rendering views of a female patient before and after the couch removal method.

∀ 0 < j ≤ k : S′
j(x, y) =

{

min(I) if Dj(x, y) > 0
Sj(x, y) otherwise

(11)

where S′
j ∈ I ′ is the jth slice in image I ′ and min(I)

denoted the minimum value of the original I image.

C. Validation

Validation was performed by radiologists who evaluated

our method in all individual cases. There were three possible

outcomes of an evaluation: passed (couch was successfully

removed), failed (couch was not removed) partially passed

(the couch was not removed completely). The validation

was done by investigating the axial as well as the volume

rendering views of the given CT representing the before -

after stage.

III. RESULTS

Based on the validation performed on the collected im-

ages, our method successfully removed 95% of the patient

couches, while 5% was partially removed. In the problematic

cases, however, increasing the n and p walues led to an ac-

ceptable result. The scoring statistics for all camera vendors

TABLE I

EVALUATION STATISTICS OF OUR METHOD

Camera vendor Passed Partially passed Failed

Vendor 1 9 1 0

Vendor 2 10 0 0

Vendor 3 9 1 0

Vendor 4 10 0 0

is detailed in Tab. I. Overall average < 1sec processing time

was necessary to run our method on a typical whole body

CT image (approx. 300 slices).

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented an accurate and quick patient couch removal

method which did not need any user interaction. Our method

did not provide acceptable result in some cases due to the

empiric p and n parameters, but modifying these values

always led to acceptable results. This means that changing n

and p variables automatically based on properties derived

from the input image, a more accurate result could be

achieved.
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B. Future Works

We will collect more CT images from more camera ven-

dors to accurately work out that mechanism which estimates

the optimal n and p parameters of our method.
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