
 

 

 

  

Abstract— The cerebral cortex of the human brain is highly 

folded. It is useful for neuroscientists and clinical researchers to 

identify and/or quantify cortical folding patterns across 

individuals. The top (gyri) and bottom (sulci) of these folds 

resemble the “blob-like” features used in computer vision. In 

this article, we evaluate different blob detectors and descriptors 

on brain MR images, and introduce our own, the "brain blob 

detector and descriptor (BBDD)." For the first time blob 

detectors are considered as spatial filters under the scale-space 

framework and their impulse responses are manipulated for 

detecting the structures in our interest. The BBDD detector is 

tailored to the scale and structure of blob-like features that 

coincide with cortical folds, and its descriptors performed well 

at discriminating these features in our evaluation. 

I. INTRODUCTION 

ECENT evidence supports heritable aspects to cortical 

folding [1,2] and an association between cortical folding 

and mental disorders [3,4]. To better understand, diagnose, or 

predict treatment outcome for these conditions based on 

morphological differences, it is important to identify and/or 

quantify the type and degree of folding across conditions.  

Magnetic Resonance Imaging (MRI) data provide contrast 

between gray and white matter of the folded cortical surface, 

and the top (gyri) and bottom (sulci) of these folds are 

distinctive features of the brain. These distinctive features are 

quite similar to the "blob-like" features of interest to the 

computer vision community. We are interested here in 

evaluating the performance of blob-like feature detectors and 

descriptors to distinguish folds in human brain MRI data, in 

the interest of developing our own method that can be refined 

for brain image analysis and clinical research. 

There are many blob-like detectors defined for different 

purposes, most of which are compared in [5,6]. However, 

scale normalized Laplacian (SNL) based on the Laplacian of 

Gaussian (LOG) [7], Salient regions based on entropy [8], 

shift invariant feature transform (SIFT) based on the 

difference of Gaussians (DOG) [9], and speeded-up robust 

features (SURF) based on the determinant of Hessian (DOH) 

[10] have attracted the most attention in the literature. There 

are also different descriptors introduced in the field of 

computer vision which are compared in [11], and some newly 

defined descriptors such as the rotation invariant feature 

transform (RIFT) [12], which plays a significant role in our 

newly introduced BBDD descriptor.  
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Please note that these methods were originally proposed 

for 2D images and the extension to 3D is not always 

straightforward. For instance, the 3D extension of the DOG 

filter is readily given, but the SIFT algorithm in which it is 

used is not easily extendable to 3D. There are a number of 3D 

extensions of the SIFT algorithm, however we used the 

recently published method [13] which is the only true 3D 

extension of the SIFT method. We used the 3D extension of 

the SURF algorithm given in [14] for our examination, and 

we extended SNL and Salient regions to 3D (normalization 

factor in SNL changes from !"#to !$%"). The extension of the 

descriptors to 3D image volumes also poses a challenge. We 

have extended the RIFT descriptor to 3D images for 

comparison. 

This paper is organized in the following format. In section 

2, blob-like detectors are reviewed and a new algorithm for 

blob detection in brain MR images is introduced. In section 3, 

descriptors are reviewed and a new descriptor is introduced. 

The evaluation of the BBDD is given in section IV. 

II. BLOB-LIKE DETECTORS 

Blob detection methods are usually designed for general-

purpose tasks such as object recognition, motion tracking, 

robot localization, etc. An attempt has also been made to use 

SIFT detectors for classification of brain MRI data in [15]. 

However, our aim here is more specialized, in that we are 

only interested in a limited range of sizes and shapes of blobs 

relevant to two types of blob-like structures: “sulcal blobs” 

and “gyral blobs.” These blob-like structures along the cortex 

of a human brain can be seen in Fig. 1 and Fig. 3. As seen in 

these figures, these blobs are particular in their size, location, 

and structure. 

For instance, a sulcal blob has a dark center surrounded by 

gray matter and extends into white matter, whereas a  gyral 

blob has the reverse order (this is used later on to 

discriminate them). In this work we examine blob detectors 

(LOG, entropy, DOG, and DOH) and the well-recognized 

methods that use these detectors (SNL, Salient regions, SIFT, 

and SURF) for extracting blob-like features in human brain 

MR images. 

Fig. 1 shows features that we extracted using SIFT (red 

dots), SURF (black circles), SNL (cyan squares), and Salient 

regions (white cross) in 2D (which produces more features 

for visual evaluation in a given slice than its 3D counterpart). 

The parameters of these algorithms are set to the suggested 

values by the original papers [7,8,9,10]. It is obvious that 

these results are not satisfactory, which is due to the fact that 

these algorithms were originally designed for other tasks. 

Their objective was focused on robustness (repeatability) 
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another vector starting from the center of the sphere and 

ending at the feature point. This resolves the issue of 

directional reference mentioned above. 

MR images are noisy and of low contrast, and the regions 

around each type of blob (sulcal or gyral) are very similar to 

each other, thus the existing descriptors do not perform well 

even with a small amount of noise added. In the BBDD 

descriptor, we reduce the size of the RIFT descriptor to an 8-

component vector by PCA. We add five new components 

(three for location, one for scale and one for the magnitude of 

the impulse response), resulting in a 13-component vector 

descriptor. Please note that coordinates of the features may 

change significantly between different scans. In our BBDD 

descriptor we transferred the coordinates to principal 

component coordinates. This ensures that the deviations 

between corresponding coordinates are minimal. 

IV. EVALUATION 

Table 2 shows the average number of extracted blob-like 

features by BBDD, SIFT, SURF, and SNL. Total number of 

sulcal/gyral blobs and the correctly detected sulcal blobs and 

gyral blobs are manually counted (in 2D for three center 

slices of axial, coronal, and sagittal planes of 36 participants) 

and the incorrect detections are reported as false positive and 

undetected blobs as false negative  in Table 2. As can be 

seen, the error percentage of the BBDD is significantly lower 

than existing methods. 

As reported in [13], SIFT descriptors are very sensitive to 

image noise. Since brain MR images are considered noisy 

and of low resolution, it is easily inferred that their 

performance will not be satisfactory. Since the GLOH 

descriptors are obtained in the same way as the SIFT 

descriptors, they should have similar performance. SURF 

descriptors are simple and they seem to be more robust to 

noise as reported in [10], however they still suffer from the 

reference direction issue mentioned in the previous section. 

In our evaluation, we compared the performance of the RIFT 

descriptor and our BBDD descriptor for gyral and sulcal 

blobs. Our measure of discriminability was the average 

Euclidean distance between all pairs of the descriptors in the 

image. Descriptor with higher average distance tolerates 

higher level of image degradation.  We have computed this 

measure for 36 human brains. We repeated this process for 

different levels of added noise (1% to 10%) and report the 

average and standard deviation in Fig. 4. As can be seen in 

Fig. 4, the average distance between the RIFT descriptors 

decreases with noise, but is stable for our BBDD descriptor.  

V. CONCLUSION 

In this study, we examined the performance of traditional 

blob-like feature extraction and matching methods applied to 

brain MR images. We added a new constraint of the feature 

structure to make sure that only sulcal blobs and gyral blobs 

are extracted. We achieved this by redesigning the impulse 

response of the blob detectors and adjusting their center lobe 

to the radii of sulci and gyri in the cerebral cortex. The 

improvement is clearly shown in Fig. 3 and Table 2. We have 

also introduced a new descriptor based on RIFT descriptors 

to maximize the distinctiveness of the features. This 

descriptor also discriminates sulcal blobs from gyral blobs 

and it is more stable to noise as is shown in Fig. 4. 
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