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Abstract— The automatic detection of longitudinal changes
in brain images is valuable in the assessment of disease
evolution and treatment efficacy. Most existing change detection
methods that are currently used in clinical research to monitor
patients suffering from neurodegenerative diseases—such as
Alzheimer’s—focus on large-scale brain deformations. However,
such patients often have other brain impairments, such as
infarcts, white matter lesions and hemorrhages, which are
typically overlooked by the deformation-based methods. Other
unsupervised change detection algorithms have been proposed
to detect tissue intensity changes. The outcome of these methods
is typically a binary change map, which identifies changed
brain regions. However, understanding what types of changes
these regions underwent is likely to provide equally important
information about lesion evolution. In this paper, we present
an unsupervised 3D change detection method based on Change
Vector Analysis. We compute and automatically threshold the
Generalized Likelihood Ratio map to obtain a binary change
map. Subsequently, we perform histogram-based clustering to
classify the change vectors. We obtain a Kappa Index of 0.82
using various types of simulated lesions. The classification error
is 2%. Finally, we are able to detect and discriminate both
small changes and ventricle expansions in datasets from Mild
Cognitive Impairment patients.

I. INTRODUCTION

The automatic detection of longitudinal changes in images

of the brain has found applications in several neurological

diseases, such as tumours and Multiple Sclerosis (MS), with

the aim of assessing disease evolution and treatment effi-

cacy [1]. In neurodegenerative diseases, such as Alzheimer’s

Disease (AD), most change detection methods can detect

large-scale brain deformations. Tensor-Based Morphometry

(TBM) has been extensively used in longitudinal and cross-

sectional studies of Mild Cognitive Impairment (MCI) and

AD populations [2]. In single-subject longitudinal analyses,

TBM consists of warping a follow-up image into the baseline

image such that the differences between the two images are

cancelled out. The Jacobian (determinant of the Jacobian

matrix) of the resulting deformation field is computed af-

terwards, giving information about local volume loss or gain

[3]. However, the major disadvantage of TBM is that it is

based entirely on the analysis of the deformation field, which

is largely influenced by the registration techniques used

and parameters chosen [4]. Non-linear registration methods

are highly under-constrained, meaning that for a given pair
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of images there is a large number of possible displace-

ment fields. In addition, almost all non-linear registration

methods require an intensity correspondence between two

homologous voxel areas in the images. This necessitates an

assumption that a certain region of the brain is present in both

images at a similar intensity, only at a different position in

each image [1], [3].

Furthermore, AD and MCI patients are likely to have other

types of lesions, which should also be carefully evaluated and

monitored. White-matter lesions (WMLs), characterized by

lower signal intensities in T1-weighted images and higher

intensities in T2-weighted images, are known to often occur

in these patients [5]. Perfusion [6] and diffusion [7] impair-

ments, such as infarcts or hemorrhages, have also been re-

ported. These lesions—besides often influencing the outcome

of the non-linear registration method—are not detected by

TBM methods.

Over recent years, several unsupervised change detection

algorithms have been proposed in a large variety of scientific

areas, such as video surveillance, remote sensing, driver

assistance systems and medical imaging [8]. In the field of

neuroimaging, change detection algorithms are often used

for detecting small changes. Bosc et al. [9] described a

complete framework for change detection in MS lesions

using multimodal MR images taken at several time points

over a two-year period. Because the aim was to detect

small changes, the preprocessing of the images included a

coarse non-linear registration of the follow-up images into

the baseline image, in order to cope with large deformations.

More recently, Seo and Milanfar [10] used local steering

kernels as features to compute the dissimilarity between a

baseline and a follow-up image. They used only one MRI

modality and applied the method to small simulated 2D

lesions.

These approaches result in binary change maps, which

show only where a change has occurred. However, knowing

how the tissue has evolved might be as important as identi-

fying its location. For example, an infarct might not change

volume but the tissue may be recovering, as shown by altered

T1 and/or T2 intensities. Patriarche et al. [11] proposed an

algorithm for the automatic assessment of tumour evolution

that detects and categorizes changes in intensities. However,

its applicability is limited to brain tumours due to the use of

a specific classification system. Lemieux used the difference

image of two T1 images and classified the changed pixels

as signal increasing or decreasing [12].

In this work, we propose an unsupervised change detection

method to detect both large-scale deformations and small and
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subtle lesions while also classifying the types of detected

changes. Our approach is based on Change Vector Analysis

(CVA) applied to multimodal (T1- and T2-weighted) MR

images. CVA is already widely used in remote sensing to

evaluate changes in, for example, satellite images. For each

voxel characterized by m features, the respective change vec-

tor (CV) is defined as the difference between the follow-up

and the baseline feature vectors. In its basic form, the change

vector’s magnitude represents how much the respective voxel

has changed in intensity. In turn, its direction is related to

the type of change the voxel has undergone [13].

We present a modified CVA method, in which a change

map is initially computed using the Generalized Likelihood

Ratio Test [14]. Subsequently, the changes found are clas-

sified according to their respective CV angles. We evaluate

the algorithm by simulating lesions of different types, i.e.,
T1 and/or T2 increasing/decreasing. Additionally, we test

our method in two MRI datasets from MCI patients. All

the processing is performed three-dimensionally.

The rest of this paper is organized as follows. Firstly,

Section II describes the datasets that are used, the preprocess-

ing steps and the proposed change detection method. Next,

the results, both for simulated lesions and for real datasets,

are presented and discussed. Finally, some conclusions and

recommendations for further work are given in Section IV.

II. METHODS

A. Data

Three-dimensional MR images are utilized in this study.

The datasets are retrieved from a large database of a cogni-

tion study with MCI patients carried out in the University

Hospital of Essen, Germany. The patients are scanned at

baseline and two years after presenting with MCI at the

hospital. Each evaluation consists of two MRI modalities

(T1- and T2-weighted). The images were acquired using

an MRI scanner (Siemens Avanto, 1.5 T). The following

protocols were used: 3D T1-weighted (TR/TE = 40/5 ms;

acquisition matrix = [256 256]; 176 slices; voxel size = 1.016

mm × 1.016 mm × 1 mm) and 3D T2-weighted (TR/TE =

3200/416 ms; acquisition matrix = [256 230]; 192 slices;

voxel size = 1.016 mm × 1.016 mm × 1 mm).

B. Preprocessing

Before applying a change detection method to a set of

longitudinal images, a preprocessing stage must be applied

in order to compensate for acquisition differences, such

as the position of the patient, the presence of bias field

inhomogeneities and intensity differences. The preprocessing

pipeline is carried out using FSL tools (FMRIB Software

Library, www.fmrib.ox.ac.uk/fsl) [15], except for the final

step, and consists of the following four steps:

1) Skull-constrained within-modality affine registration

- we follow the registration framework utilized in

SIENA (Structural Image Evaluation, using Normalisa-

tion, of Atrophy, http://www.fmrib.ox.ac.uk/fsl/siena),

which uses the skulls to constrain the affine registration

[16].

2) Between-modalities affine registration - the T2 baseline

image after within-modality registration is registered

to the T1 baseline image. The resulting transform is

applied to the T2 follow-up image. After this step, all

four images are in the same reference space.

3) Brain extraction and bias field correction - the

brain is segmented using BET (Brain Extrac-

tion Tool, http://www.fmrib.ox.ac.uk/fsl/bet2) [17]

and corrected for bias field inhomogeneities with

FAST (FMRIB’s Automated Segmentation Tool,

http://fsl.fmrib.ox.ac.uk/fsl/fast4/) [18].

4) Intensity normalization - the histograms of the follow-

up images are matched to those of the respective

baseline images, by using ITK [19].

These steps are shown schematically in Fig. 1.

1. Within-modality
affine registration

3. Brain extraction and 
   bias field correction

4. Histogram
   matching

T1 images T2 images

baseline follow-up baseline follow-up

2. Between-modalities
   affine registration

Fig. 1. Preprocessing pipeline. See text for an explanation of each step.

C. Change detection and classification

A change vector (CV) is defined as the difference between

the follow-up and the baseline feature vectors (1). The
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features used in this work are the T1 and the T2 intensities,

as shown in Fig. 2.

T1

T2

baseline follow-up

Fig. 2. Change vector for a T2-increasing and T1-decreasing change.

CV = If − Ib (1)

with If and Ib being the voxel’s intensity vector at follow-up

and baseline, respectively.

The change vector is characterized by a magnitude and an

angle:

‖CV‖ =

√
CVT1

2 + CVT2

2 (2)

� CV = arctan

(
CVT2

CVT1

)
(3)

Typically, the change vector magnitude is used to deter-

mine the binary change map. Instead of using the magnitude

of the change vector, which has been reported to be sensitive

to noise, intensity inhomogeneities and registration errors,

we use the Generalized Likelihood Ratio (GLR) test [14],

defined for multimodal images in [9], in order to assess

whether a change has occurred (H1 hypothesis) or not (H0

hypothesis). The test is performed voxelwise within a 3×3×3
local window W . The GLR assumes Gaussian-distributed

intensities. It corresponds to the ratio between p(H1) and

p(H0) and is defined as [9]:

GLRs = −1

2

∑
i∈Ws

[(Ib(i)− μ̂b)
T C−1(Ib(i)− μ̂b)+

(If (i)− μ̂f )
T C−1(If (i)− μ̂f )−

(Ib(i)− μ̂0)
T C−1(Ib(i)− μ̂0)−

(If (i)− μ̂0)
T C−1(If (i)− μ̂0)] (4)

where C is the covariance matrix of the noise image,

calculated as in [9], and μ̂0,b,f are the mean estimators

determined as in [14] for the two hypotheses.

In order to obtain a change map, the GLR must be

thresholded. Considering the histogram of the change maps

obtained at small (Fig. 3a and Fig. 3b) and at high threshold

values (Fig. 3c and Fig. 3d), two observations can be pointed

out. Firstly, at a small threshold the histogram is almost

uniform; in contrast, the histogram obtained with a high

threshold shows clearly distinguishable peaks. Secondly, an

offset is present in the case of the low threshold value,

while the high threshold histogram has a zero baseline. We

decide on the threshold value based on the histogram offsets

of change maps computed at increasing threshold values

(Fig. 4a). The offset is calculated as the mean value of the

histogram in unchanged regions. We obtain these regions by

computing a piecewise linear approximation of the histogram

at intervals of 20o. The unchanged regions are then taken

as the three intervals with the flattest linear fit. Finally, the

threshold is selected when the offset becomes lower than

0.0003 - horizontal line in Fig. 4a). This value was selected

empirically so as to be small but still larger than zero.

a) b)

c) d)

Fig. 3. Angular histograms of the change vectors obtained after thresh-
olding the GLR map with: a) and b) a low threshold; c) and d) a high
threshold. In a) and c), different line colors correspond to different change
vector magnitude bins.

After thresholding the GLR map, the changed voxels are

clustered based on their angular histograms. A Parzen density

estimator is used to obtain a smooth approximation of the

angular histogram. The local maxima and minima of the

estimated curve are detected (Fig. 4b). An angle cluster is

then defined as being centered on a local maximum and

contained within two local minima. After clustering, the

detected lesions can be inspected in a polar plot (Fig. 4c).

III. RESULTS

A. Simulated lesions

To evaluate the change detection method’s performance,

we simulate lesions of various sizes and intensities on Patient

#1’s baseline image. Eight distinctive lesions are simulated

as in [20] and combined into several groups of two, three or

four lesions. Various T1 and T2 intensities are assigned to

each lesion, ranging from 5% to 40% increase/decrease with

respect to the baseline intensities. Gaussian noise (2% of the

brain’s intensity range) is then added to the resulting image.

In total, 40 simulations are carried out. Our evaluation

is two-fold: first we calculate the Kappa Index (Equation

5) to assess how close our binary change map (CM) is

to the ground truth (GT); afterwards, we determine the

classification error, which we define as the percentage of

voxels that were correctly classified as “changed voxels” but

were incorrectly assigned to a lesion type.
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c)

a) b)

Fig. 4. a) Evolution of the angular histogram’s offset with varying
thresholds; the selected threshold is pointed by the arrow. b) Angular
histogram with its Parzen estimation, local maxima and minima. c) Polar
plot of the change vectors after clustering; squares represent the ground
truth and dots refer to the detected lesions; different colors correspond to
different simulated/detected lesions.

KI = 2
#(GT

⋂
CM)

#GT +#CM
(5)

A KI of 1 corresponds to a perfect agreement between

real and calculated change maps. Altman et al. consider

that KI values within the range 0.60-0.80 correspond to a

“good” matching [21]. Bartko et al. observed that KI values

greater than 0.70 are generally regarded as an “excellent”

agreement between detection results and ground truth [22].

In our experiments, we obtained an average KI of 0.82 and

an average classification error of 2%.

B. Mild Cognitive Impairment Data

Fig. 5 shows the results obtained for the first dataset.

Three different types of changes were detected: the larger

one, in green, corresponds to ventricular expansion; in red, a

T1-increasing and T2-decreasing change, in the deep white

matter, which suggests an improvement in the previously

existing lesion (outlined in Fig. 6); finally, a T2-increasing

change was detected near the brainstem.

The results for Patient #2 are shown in Fig. 7. Besides

expansion of the ventricles (in green), two other change

types were detected. These are related to an intraventricu-

lar abnormality (possibly a hemorrhage), as is clear from

inspecting the baseline and follow-up T2 images (Fig. 8).

The T1 images do not show such differentiated intensities

in this region, which explains why the respective CV angles

are around 90o and 270o.

IV. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we have presented an unsupervised method

to detect and discriminate changes in longitudinal images of

the brain. Using simulated lesions, we obtained a Kappa In-

dex of 0.82 and a classification error of 2%. Our preliminary

a) Angular histogram b) Local extremes detection

c) Clustered CVs d) 3D change map

Fig. 5. Change detection in Patient #1.

a) b)

Fig. 6. Baseline (a) and follow-up (b) T2 slice from Patient #1, with the
changing lesion outlined.

a) Angular histogram b) Local extremes detection

c) Clustered CVs d) 3D change map

Fig. 7. Change detection in Patient #2.
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a) b)

Fig. 8. Baseline (a) and follow-up (b) T2 slice from Patient #2, with the
two changes outlined.

results have further demonstrated that the method is able to

identify both ventricular enlargement and the evolution of

small and subtle lesions in MCI subjects.
However, the method has several drawbacks. Even though

a local window was taken to compute the change map—

thereby diminishing the influence of possible local mis-

registration errors—the sensitivity of the method to such

errors was not assessed. The same applies to the intensity

corrections and normalisations. A thorough study into the

sensitivity of the algorithm to the preprocessing steps is

therefore highly desirable to allow improvement of the dis-

crimination between artifacts and actual changes. The need

for such study is even greater in the absence of a ground

truth, although that is true of most longitudinal imaging

studies.
Furthermore, other features, such as texture descriptors,

image gradient and Laplacian, also need to be considered

so as to include more information about tissues’ local prop-

erties. In that case, other angle measures would have to be

used, such as the generalized direction cosines.
Finally, the method’s performance must be evaluated

against a larger database with more types of lesions. Ulti-

mately, our goal is to develop a general, automatic and robust

change detection method that can be applied to the diagnosis

and monitoring of a variety of neurological diseases.
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