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Abstract—Automatically segmenting brain magnetic resonance
images into grey matter, white matter, and cerebrospinal fluid
compartments is a fundamentally important neuroimaging prob-
lem whose difficulty is heightened in the presence of aging and
neurodegenerative disease. Current methods overlap greatly in
terms of identifiable algorithmic components, and the impact
of specific components on performance is generally unclear in
important real-world scenarios involving serial scanning, multiple
scanners, and neurodegenerative disease. Therefore we evaluated
the impact that one such component, the Markov Random
Field (MRF) optimizer that encourages spatially-smooth tissue
labelings, has on brain tissue segmentation performance. Two
challenging elderly data sets were used to test segmentation
consistency across scanners and biological plausibility of tissue
change estimates; and a simulated young brain data set was used
to test accuracy against ground truth. Belief propagation (BP)
and graph cuts (GC), used as the MRF optimizer component of
a standardized segmentation system, provide high segmentation
performance on aggregate that is competitive with end-to-end
systems provided by SPM and FSL (FAST) as well as the more
traditional MRF optimizer iterated conditional modes (ICM).
However, the relative performance of each method varied strongly
by performance criterion and differed between young and old
brains. The findings emphasize the unique difficulties involved in
segmenting the aging brain, and suggest that optimal algorithm
components may depend in part on performance criteria.

I. INTRODUCTION

Fully-automated methods for classifying each pixel in brain
Magnetic Resonance Imagery (MRI) into one of three tissue
compartments– grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)– are playing increasingly impor-
tant roles in characterizing brain changes that accompany
brain development, aging, and neurodegenerative diseases.
For this reason, a large array of brain tissue segmentation
methods have been proposed and validated on real-world
data sets. Unfortunately, such methods are generally presented
as monolithic end-to-end solutions rather than collections of
computational modules, despite the fact that most algorithms
have in common a few easily-identifiable components. Promi-
nent components include statistical models that relate image
intensities to segmentation labels, formalisms for encourag-
ing certain spatial configurations of tissue labels, models of
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partial volume effects, and numerical routines that solve for
optimal labelings. Although an individual component may be
implemented similarly across several state-of-the-art methods,
the impact of that component on segmentation performance
is generally not explored. Such component-level performance
evaluation would enable the construction of high-performing
segmentation systems from high-performing components, es-
pecially now that a growing number of image processing
software platforms (Insight Toolkit, LONI Pipeline, etc.) are
based on plug-and-play assembly of overall systems.

Additionally, the rise to prominence of large-scale neu-
roimaging studies [1] has heightened the need for algorithms
that provide biologically-plausible tissue segmentations of
large groups of healthy, aging, and diseased brains scanned
on multiple scanners at multiple points in time. In aging,
brain tissue measurements collected on the same or differing
scanners in rapid succession (over the course of days or weeks)
should be highly consistent; GM and WM volumes should
either remain stable or decline over longer time course (months
or years); and the white matter hyperintensities (WMHs)
commonly associated with aging should be properly accounted
for. To date, detailed validation of brain segmentation methods
in this setting has been lacking.

The purpose of this paper is to take a first step toward
component-level performance evaluation of brain segmenta-
tion methods in multi-site longitudinal studies of aging. We fo-
cus on the optimization component of Markov Random Fields
(MRFs), comparing three types: Belief Propagation (BP),
Graph Cuts (GC), and Iterated Conditional Modes (ICM).
Each of these optimizers, which encourage plausible labelings
of pixels, was incorporated into an established segmenter [2]
to assess the impact of this component on performance. We
assessed performance on two challenging elderly scan sets in
terms of tissue volume agreement on rapidly-repeated serial
scans on differing MRI scanners, and in terms of biological
plausibility of tissue changes over time. WMHs were detected
on all scans independently and omitted from GM and WM
volumes. To highlight the unique challenges presented by the
aging brain, we also applied the MRF methods to simulated
scans of a young, healthy brain [3], and compared performance
against a popular existing package ([4]) that uses this same
young brain to initialize its segmentations. We then indexed
performance against that of FAST [5], a widely-used end-to-
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end system.

II. RELATED WORK

Related work largely falls into one of two categories: per-
formance comparisons among multiple off-the-shelf, end-to-
end brain segmentation systems; and assessment of individual
components of pixel labeling systems, especially the MRF
optimizer, for other application domains. For the former, a
wealth of papers have focused on FAST and SPM. In two
studies that used simulated and real data to assess tissue
segmentation accuracy within and between segmenters, SPM
was found to be more accurate than FAST. [6], [7]. Excellent
agreement between the two methods [8], and similar test-
retest reliability between the two [9], has been reported,
although one report suggests that FAST may be superior for
measuring longitudinal brain volume changes [10]. Mean-
while, performance comparisons among MRF optimizers have
been mixed, with two studies suggesting that GC and BP
perform comparably on stereo disparity map estimation [11],
[12], but another suggesting that among GC, BP, ICM, and
other competing methods, GC performs better on photographic
image stitching, denoising, and segmentation applications [13].
The one component-level MRI brain segmentation evaluation
focused on the model relating image intensity to tissue labels,
finding that on simulated data, no one model clearly does best
among the ones tested [14].

III. METHODS

To provide an objective comparison between MRF opti-
mizers, we implement them within a common framework
of an Expectation-Maximization (EM) algorithm that iterates
between estimating the statistical distributions of image inten-
sity for each tissue class, based on current voxel-level tissue
labels, and estimating tissue labels based on the current tissue
intensity models [2].

Our implementation takes as input a T1-weighted brain MRI
and a set of initial voxel-level tissue labels. The initial labels
are provided by a fully-automated process that warps the input
image to a standardized template space via a high-dimensional
B-spline transformation [15], [16]. The known tissue labels of
voxels in this space, generated by a bootstrapping procedure,
are then transformed back to the space of the input image as
the initial tissue labeling.

Given the input image and initial segmentation, the main
algorithm first computes the mean and variance parameters for
Gaussian models of the image intensities within each tissue
class. These intensity models are then used to estimate the
probability that each voxel belongs to each of the three tissue
classes. An MRF optimizer then solves for a voxel labeling
that respects the tissue probabilities while encouraging the
labelings to be spatially smooth. The voxel labels are then used
to calculate new tissue class intensity model parameters, and
so on. The algorithm converges when the Kullback−Leibler
divergence between tissue intensity models across iterations
falls below a threshold.

While the original algorithm [2] used ICM for MRF op-
timization, we implemented BP, GC, and ICM each for this
purpose. Our implementation also diverges from the original
algorithm by adding the warping-based label initialization, and
by using a gradient filter to prevent the MRF from encouraging
spatial smoothness of the tissue labelings across edges.

1) Belief Propagation: Belief propagation (BP) [17] was
proposed as a fast way to perform exact label inference on
tree-structured graphs, and although it is known to provide
sub-optimal label estimates in more general graphs, it performs
well in practice on real-world problems [18]. In BP, voxels
pass numerical messages to neighboring voxels about their
beliefs that the neighbors should be assigned to each of the
possible tissue labels. Voxels maintain their beliefs in each of
the possible tissue labels based on input from their neighbors
together with the tissue intensity models. The messages are
passed iteratively until the voxel beliefs converge.

2) Graph Cuts: A well-studied computer science task
called maximum-flow/minimum-cut is defined by a graph
with two designated positions connected by multiple paths of
nodes and edges, where the goal is determining a maximizing
configuration of “flow” across edges between them. It was
applied to problems of binary image segmentation in 1989,
allowing the use of existing algorithms to find an exact global
minimum [19]. In 2001, Boykov et. al. extended it to n-ary
label sets by repeating binary cuts over pairs of possible la-
bels, and proposed a faster, approximate minimization method
[20]. Today, GC and BP are both frequently used in current
literature.

3) Iterated Conditional Modes: Iterated conditional modes
(ICM) [21] is an iterative, greedy algorithm in which each
voxel label is set to the most probable according the local
evidence from tissue intensity models and the current tis-
sue labels of neighboring nodes only, ignoring longer-range
dependencies required for a globally optimal solution. This
process is applied repeatedly until convergence. While later
methods have surpassed ICM, it is still employed in some
current literature for its simplicity and availability.

A. FAST

FAST is a widely used end-to-end system commonly used
in MR tissue segmentation tasks [5]. Like our method above,
FAST utilizes EM and Gaussian tissue intensity models.
Unlike our implementations, its MRF model utilizes ICM for
optimization and is homogenous in space. FAST also differs
by using histogram-based initializers.

B. SPM

SPM is a popular analysis software package for brain
imaging data. In this work we utilize the tissue segmentation
method included in SPM version 5 [4] (here referred to as
simply SPM). Like the other presented methods, it employs
EM and Gaussian intensity models, but unlike the others, a
MRF model is not incorporated. SPM uses an initialization
method similar to our implementations where the input image
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is warped to a known template space, but utilizes a low-
dimensional alignment for this rather than a high-dimensional
B-spline warp.

IV. EXPERIMENTS

1) Longitudinal tissue change: We assessed the viability
of the methods for estimation of elderly brain tissue change
in 57 cognitively-normal elderly individuals and 60 clinically
diagnosed with AD (Alzheimer’s Disease) [1]. Each individual
received MRI scans at baseline and at followup visits 6 months
and 12 months later. For each method, subject, and tissue
type we fit a linear regression line to the plot of tissue
volume against time, and used the line slope to measure rate
of tissue change. Line slopes indicating increases in GM or
WM, or decreases in CSF, are biologically implausible in
this population; we used the percentage of subjects whose
rates of tissue change were implausible as a measure of
segmentation method validity. To quantify the magnitude of
these implausibility errors, we calculated the median and
maximum of the magnitudes of such implausible change rates
(Table I). ICM generally provided the smallest number of
implausible estimates, but BP provided the smallest magnitude
of such implausible change. Varying the σ parameter of the
gradient filter over a range from 1 to 2, and varying the slope
of the gradient-modulating sigmoid function from 2.7 to 5,
did not appreciably alter the findings. All methods provided
relatively higher numbers of implausible change estimates in
WM, whose rate of change in both healthy aging and AD is
close to 0. Outside of number of implausible WM change
estimates, neither SPM nor FAST ranked highest on any
performance criterion.

2) Consistency across scanners: We scanned a group of
individuals multiple times over a short period of time, on
multiple scanners, and assessed variability in estimated tissue
volumes across scanners. A set of 8 cognitively-normal elderly
individuals received one T1-weighted and one FLAIR MRI
scan on a pair of 1.5T MRI scanners (see [22] for acquisition
details); an additional 5 individuals received another T1-
weighted and FLAIR scan on a Siemens Trio 3T MRI scanner.
For each pair of scanners, segmentation method, and tissue
type, we calculated the intraclass correlation coefficient (ICC)
in estimated tissue volume between scanners (Table I). ICC
values closer to 1 indicate stronger agreement. Among MRF
methods, GC and BP generally provided the highest inter-
scanner agreement, except for 1.5T agreement in CSF. Inter-
scanner agreements in GM, and agreements between 1.5T and
3T in WM, were relatively lower for FAST, but its agreements
in CSF volumes were either superior to or comparable to the
remaining methods. SPM failed to adequately segment several
images, and was the highest-ranking method on none of the
performance criteria.

3) Simulated data with ground truth: Each of the five
methods were used to segment the BrainWeb [3] template
image, which is provided with ground-truth tissue probability
maps. Using the BrainWeb simulator [23] we added five levels
of Gaussian noise to the template image: 0%, 3%, 5% 7% and

Method
1.5T A vs. 

1.5T B
1.5T A 
vs. 3T

1.5T B 
vs. 3T

Percent 
Increasing / 
Decreasing

Mean 
Increase / 
Decrease

Max 
Increase / 
Decrease

Belief Prop. 0.097 0.541 0.116 58.9% 9.5 26.5
Graph Cuts 0.102 0.634 0.145 78.5% 20.7 120.9
ICM 0.101 0.37 0.119 75.7% 27.9 113.7
SPM -0.144 0.201 -0.337 36.8% 11.9 49.9
FAST 0.271 0.117 -0.065 55.1% 22.8 200.6

Belief Prop. 0.575 0.738 0.712 34.6% 8.2 33.3
Graph Cuts 0.584 0.508 0.397 24.3% 15.6 72.9
ICM 0.163 0.694 0.157 9.3% 28.4 68.7
SPM -0.029 0.433 -0.036 29.2% 14.7 54.0
FAST 0.239 0.344 0.084 18.7% 28.6 200.8

Belief Prop. 0.524 0.451 0.627 15.9% -4.2 -31.3
Graph Cuts 0.52 0.416 0.653 10.3% -7.3 -39.1
ICM 0.756 0.338 0.42 8.4% -11.9 -39.8
SPM 0.06 0.071 0.225 20.8% -11.3 -57.7
FAST 0.752 0.578 0.885 15.0% -10.2 -59.6

White Matter

Gray Matter

CSF

Inter-Scanner Agreement Implausible Longitudinal Change

TABLE I
SUMMARY METHOD PERFORMANCE ON INTER-SCANNER AGREEMENT

AND IMPLAUSIBLE LONGITUDINAL CHANGE EXPERIMENTS. FOR
INTER-SCANNER AGREEMENT, LISTED VALUES ARE INTRACLASS
CORRELATION COEFFICIENTS (ICCS) BETWEEN PAIRS OF MRI

SCANNERS, INCLUDING TWO 1.5T SCANNERS (1.5T A AND 1.5T B) AND
ONE 3T SCANNER. FOR LONGITUDINAL CHANGE, LISTED VALUES ARE

MEAN AND MAXIMUM RATES OF INCREASE AND DECREASE IN UNITS OF
CC PER YEAR. IN EACH COLUMN, THE OVERALL METHOD AND THE MRF

OPTIMIZER PROVIDING THE LARGEST ICC, FEWEST IMPLAUSIBLE
CHANGE RATES, OR SMALLEST MAGNITUDE OF IMPLAUSIBLE CHANGE

ARE SHOWN IN BOLD AND ITALICS RESPECTIVELY.

9%. For each noise level, tissue type, and method, a percentage
error for the estimated tissue volume was calculated by com-
paring it to the ground truth tissue volume (Table II). Among
MRF methods, BP and ICM provided the highest WM and
CSF accuracy respectively. GC and BP provided the highest
accuracies among GM, with BP performing slightly better on
the higher-noise images. SPM gave higher accuracy GM and
CSF estimates than any of these methods on all images; SPM
and FAST achieved comparably high performance, especially
on WM and GM, and BP gave slightly better WM estimates
than SPM on the lower-noise images.

V. DISCUSSION

The key finding of this study is that in aggregate, GC
and BP provided elderly brain tissue segmentations that were
competitive with, or superior to, the more traditional ICM
and state-of-the-art systems SPM and FAST. However, each
method had its own strength: BP provided milder errors
in depiction of longitudinal change, BP and GC provided
comparably high inter-scanner agreement, ICM provided fewer
implausible change estimates, SPM excelled in the young
brain, and FAST had some advantages, especially in inter-
scanner CSF agreement. The two implications of these findings
are, first, that in the context of aging, there is room to improve
upon the brain tissue segmentation performance provided by
off-the-shelf systems; and second, that optimal algorithmic
choices for brain segmentation may depend on the relative
importance of various performance criteria.
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Method 0% 3% 5% 7% 9%

Belief Prop. 2.1% 0.6% 1.4% 3.3% 4.3%
Graph Cuts 8.1% 4.0% 6.6% 9.0% 13.1%
ICM 13.4% 14.4% 16.4% 17.3% 19.4%
SPM 18.3% 3.2% 4.5% 2.5% 0.5%
FAST 43.8% 4.3% 0.7% 2.9% 5.4%

Belief Prop. 10.6% 10.7% 11.2% 12.3% 13.3%
Graph Cuts 8.7% 8.7% 13.8% 16.5% 21.2%
ICM 14.7% 15.1% 16.8% 17.7% 19.9%
SPM 8.5% 2.2% 1.1% 1.4% 0.4%
FAST 27.2% 3.5% 5.3% 4.8% 4.9%

Belief Prop. 55.8% 52.7% 49.4% 48.4% 48.9%
Graph Cuts 64.5% 54.6% 45.0% 47.8% 53.0%
ICM 31.3% 30.3% 31.0% 31.7% 33.5%
SPM 33.9% 26.5% 19.0% 13.3% 11.5%
FAST 34.6% 33.8% 27.2% 20.2% 14.2%

CSF

White Matter

Gray Matter

TABLE II
PERCENT ERROR IN TISSUE VOLUMES FOR THE BRAINWEB IMAGES,

SIMULATED WITH NOISE VARYING FROM 0 TO 9%. IN EACH COLUMN, THE
OVERALL METHOD AND MRF OPTIMIZER PROVIDING THE LOWEST

PERCENT ERRORS ARE SHOWN IN BOLD AND ITALICS RESPECTIVELY.

As expected, SPM excelled in segmenting the young brain
that it already uses in the internals of its segmentation routine;
among the MRF optimizers, BP and ICM provided the highest
accuracy on WM and CSF, respectively, while BP and GC
performed best on GM. The differing pattern of results be-
tween the young and old brain emphasizes the importance of
developing and validating brain segmentation methods that are
optimized for aging and aging-associated neurological disease.
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