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Abstract— In this paper, we propose a simple approach
for detecting activated voxels in fMRI data by exploiting the
inherent sparsity property of the BOLD signal. The proposed
approach addresses the solution of the inverse problem induced
by the General Linear Model through an l0-regularized Least
Absolute Deviation (l0-LAD) regression method. Under this
framework, the activated voxels are detected by a two-stages
process: estimation and basis selection. First, an estimate of the
coefficients that minimizes the absolute deviation error is found
by means of the weighted median operator. Then, a thresholding
operator is applied on the estimated value in order to decide
whether or not a stimulus is present in the observed BOLD sig-
nal. The threshold parameter turns out to be the regularization
parameter that controls the model sparseness. The method was
proven on real fMRI data leading to similar activated regions
than those activated by the Statistical Parametric Mapping
(SPM) software.

I. INTRODUCTION

The medical imaging modality known as functional Mag-

netic Resonance Imaging (fMRI) using blood oxygen level-

dependent (BOLD) contrast is a noninvasive technique

widely accepted as a standard tool for localizing brain

activity. During the course of an fMRI experiment, a series of

brain images is acquired by repeatedly scanning the subject’s

brain while he/she is performing a task or is exposed to a

stimulus. From this sequence of images a statistical analysis

is carried out to detect which voxels are activated by the

stimulation. In practice, the most widely used fMRI data

analysis technique is based on the General Linear Model

(GLM). Under this approach a linear model is fitted to the

fMRI time series of each voxel resulting in a set of voxel-

specific parameters, which are then used to form statistical

parametric maps (SPMs)[1].

In recent years, there has been a growing interest in the

fMRI data analysis based on sparse representation of fMRI

signal, specially since Daubechies et al. [2] demonstrated

the fact that the most influential factor for the success of

Independent Component Analysis (ICA) algorithm is sparsity

of the components rather than independence. Moreover,

they suggest to develop decomposition methods based on

the GLM where the BOLD signal, at each voxel, may be

regarded as a linear superposition of a sparse set of brain

activity patterns.
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More recently, Lee et al. [3] exploit the sparsity property

of fMRI data to describe the BOLD signal at each voxel as a

sparse combination of elements of a data-driven dictionary.

Ordinary Least Squares (OLS) has been traditionally used

as the primary approach to solve the inverse problem induced

by the GLM leading to a solution that is, in general,

dense. Therefore, to exploit the sparsity property of fMRI

data a more suitable approach to solve the inverse problem

should be used. Recently, there have been proposed several

approaches to solve linear regression problems where the

parameter vector is known in advance to be sparse [4].

Among these techniques are methods such as Orthogonal

Matching Pursuit (OMP) [5], and ℓ0-regularized Least Abso-

lute Deviation (ℓ0-LAD) [6] being the later the most suitable

for the application at hand since it uses a continuation kind

of approach to set the regularization parameter.

In this paper, the problem of detecting activated voxels

is addressed under the framework of sparse signal repre-

sentation where the BOLD signal is considered sparse in

a dictionary. More specifically, we propose to use the ℓ0-

LAD regression method to estimate the parameters of the

GLM: y = Xβ + e, where y is the observed fMRI signal

at one voxel, X is the design matrix (dictionary), β is the

set of unknown parameters and e is the noise vector. Under

this framework, each time series is considered as a linear

combination of a few elements of the design matrix and

the l0-LAD algorithm is then used to find whether or not a

stimulus is present in the observed signal and its contribution

to signal formation. Thus, a voxel is considered activated by

the stimulus Xi if the corresponding parameter βi survives

the l0-regularized LAD regression as one of the strongest

contributor to the BOLD signal.

II. THE GENERAL LINEAR MODEL APPROACH

Consider the general linear model approach that models

the acquired time series as a linear combination of several

regressor variables (predictors) plus an error term for each

voxel in an fMRI imaging system. More precisely, the GLM

for the observed response variable yj at voxel j, j =
1, . . . , N , is given by:

yj = Xβj + ej (1)

where, yj ∈ RM , with M the number of scans, X ∈ RM×L

denotes the design matrix, βj ∈ RL represents the signal

strength at the j-th voxel, and ej ∈ RM is the noise vector at

the j-th voxel. The entries of the noise vector are usually as-

sumed to be independent and identically distributed with zero

mean and variance σ2. In the fMRI literature, there exist two

different approaches to define the design matrix X. In a first
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approach, each column-vector of the design matrix is defined

by a stimulus/task function convolved with a hemodynamic

response function (HRF), i.e. the predicted task related

BOLD response [7]. The second approach constructs the

design matrix not only with the expected task-related BOLD

response, as described above, but also nuisance components

that model the confounding effects are added as column-

vector to the design matrix. This later approach has been

found to be more convenient for the proposed approach. The

simplest version of the GLM assumes that both the stimulus

function and the hemodynamic response function are known

in advanced. The stimulus is assumed to be equivalent to

the experimental paradigm, while the HRF is modeled using

a canonical HRF, typically either a gamma function or the

difference between two gamma functions [7]. The predicted

BOLD response is thus modeled by convolving the stimulus

with the modeled HRF.

By exploiting the linear model, it is possible to assess

effects of interest that are spanned by one or more columns of

X using a contrast, that is, a linear combination of parameter

estimates: c1β̂1j + c2β̂2j + . . . + cLβ̂Lj where the vector

c = [c1, c2, ..., cL]T is referred to as the contrast vector.

Hypothesis testing is performed on a voxel-by-voxel basis

by testing individual model parameters using a t-test and

subsets of parameters using a partial F-test. Having repeated

this procedure for each voxel, the results are assembled into

an image termed the statistical parametric map (SPM), whose

voxel measurements correspond to the test statistic calculated

at that particular voxel [7].

III. ACTIVE VOXEL DETECTION BY EXPLOITING

SPARSITY

A. Motivation

For illustrative purposes and to gain some inside about

the performance of OLS, ℓ0-LS (using OMP) and ℓ0-LAD in

solving (1) when the parameter vector is sparse, the synthetic

BOLD signal depicted in Fig. 1 is analyzed. In this example,

we model the fMRI time series z of a particular voxel

as a sparse superposition of various stimuli and additive

noise. That is, z = Xa + η, where a is a 3-sparse vector,

i.e. only 3 components of the L-dimensional vector have

nonzero values. Thus, the voxel related to the observed

time series z is activated just by three stimuli. From the

observed time series, we are interested in determining which

stimuli in the design matrix X activate the corresponding

voxel and the contributions of those stimuli. In order to

generate synthetic data as close as possible to a real ex-

periment, the design matrix X ∈ R500×13 is constructed

from all 13 transformed/convolved task functions obtained

from Pittsburgh Brain Activity Interpretation Competition

2007 (PBAIC 2007) [8]. Furthermore, the noise vector η

is a scaled version of a time series extracted from a non

activated voxel in the fMRI dataset provided by [8]. The

scaling factor depends on the desired signal to noise ratio

that for illustrative purpose it has been set to 9 dB. As can

be seen in Fig. 1, OLS generates spurious components in the

estimation of a. While OMP fails to detect the right support
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Fig. 1. Solution of the inverse problem: z = Xa+η. Top: observed time
series z. Bottom: solutions yielded by: OLS, OMP, and ℓ0-LAD; here ◦

denotes the original parameter vector and • denotes the estimated solution.

of the sparse signal since the stimulus 10 is considered as part

of the signal in place of stimulus 7. This is probably caused

by the similarity between stimuli 7 and 10. These spurious

can be wrongly interpreted as a presence of a stimulus/task

function in the BOLD signal where, indeed, it is not present.

In turn, this may lead, inevitably, to increase false-positives.

On the other hand, l0-LAD yields the right support of the

activated stimulus and a relative good approximation of their

contribution to z.

B. Parameter estimation by solving ℓ0-regularized LAD

Consider the time series y given by the linear model:

y = Xβ + e (2)

we want to find the explanatory variables that best suit the

model under a certain error criterium. That is, we want to

locate the column vectors of X and their contribution such

that the data-fitting term ‖Xβ − y‖lp reaches a minimum

subject to the constraint that β has a few nonzero values.

Formally, we want to solve the ℓ0-regularized ℓp regression

problem:

min
β

‖y − Xβ‖lp + τ‖β‖0 (3)

where ‖β‖0 denotes the ℓ0 quasi norm that counts the

number of nonzero entries in β, ‖ · ‖lp denotes the lp-norm,

and τ > 0 is the regularization parameter that balances

the conflicting objectives of minimizing the data-fitting term

while yielding, at the same time, a sparse solution on

β [4]. Solving this ℓ0-regularized lp problem is NP-hard

owing to the sparsity constraint imposed by the ℓ0-norm.

In [6] an iterative algorithm has been proposed to solve this

optimization problem using a coordinate descent approach

where the l1-norm is used in the data fitting term. Under

this approach the solution of the l0-LAD regression problem

is achieved by reducing the L-dimensional problem given

by (3) to L one-dimensional problems by supposing that all

entries of the sparse vector β are known but one of them.

Therefore, in order to estimate the n-th unknown entry of

β, the entries βj, j = 1, .., L, j 6= n, are treated as known
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constants. According to this, the l0-LAD problem reduces to

the one-dimensional minimization problem:

β̂n = arg min
βn

M∑

i=1

|rin − xinβn| + τ |βn|0 + b (4)

where b = τ
∑L

j=1,j 6=n |βj |0, with |βj |0 = 1 if βj 6= 0,

otherwise |βj |0 = 0, and rin denotes the i-th entry of the

n-th residual column vector defined as:

rn = y −
L∑

j=1,j 6=n

xjβj (5)

where xj denotes the j-th explanatory variable of the design

matrix. Note that rn is the n-th residual term that remains

after subtracting from the observed fMRI signal y the contri-

butions of all explanatory variables (stimuli and confounds)

but the n-th one. It was shown in [6] that the solution of the

optimization problem (4) can be thought of as a two-stages

process: estimation and basis selection. More precisely, in

a first stage, an estimation of βn is found by solving the

optimization problem (4) leading to unregularized weighted

median operator as the underlying operation for parameter

estimation. That is,

β̃n = MEDIAN

(
|xin| ⋄

rin

xin

)
(6)

where ⋄ denotes the operation: Wi ⋄ vi =

Wi times︷ ︸︸ ︷
vi, vi, . . . , vi.

The l0-regularization induces the second stage where a hard

thresholding operator is applied on the estimated value:

β̂n =

{
β̃n, ‖rn‖1 − ‖rn − β̃nxn‖1 > τ

0, otherwise
(7)

From (7), it can be seen that the n-th entry of β̂ is considered

relevant if τ < ‖rn‖1 − ‖rn − β̃nxn‖1 ≤ |β̃n| ‖xn‖1. This

latter inequality shows that τ controls whether the β̃n is

significant or not based on an estimate of its magnitude.

Thus, if a good estimate has been determined and τ has been

properly chosen the hard thresholding stage will identify

correctly the nonzero values of β̃n. Therefore, determining

the regularization parameter is a critical step as τ governs the

sparsity of β since it becomes the hard threshold parameter in

(7). In [6], the authors follow a continuation approach which

treats the regularization parameter as a tuning parameter

whose value change as the iterative algorithm progresses.

That is, τ = αk, 0 < α < 1, and k = 1, . . . , K , with K the

total number of iterations. Interesting, this approach aims

at detecting in order of descending signal contribution the

nonzero values of the parameters vector since it starts with

a large value for the regularization parameter and decreases

its values as the algorithm progress. More interesting, this

approach for solving (3) can be thought of as a successive

cancelation of stimulus effects on the observed data. Thus, if

a voxel is activated by any particular stimulus its contribution

in the formation of the time series is iteratively removed to

allow the identification of other stimuli in the residual signal.

IV. METHODOLOGY

A. Data

The dataset used for experimentation in this research

was obtained from PBAIC 2007. Brain images databases

were collected from three subjects (subject 1, subject 13

and subject 14) with a Siemens 3T Allegra scanner. The

functional images were acquired by using a EpiBOLD se-

quence, with imaging parameters TR and TE being set to

1.75 s and 25 ms, respectively. Each subject’s data consists

of three runs with a time duration of approximately 20-

minutes each one (704 volumes in each segment). Each

volume contains 64 × 64 × 34 voxels with a voxel size

of 3.2 × 3.2 × 3.5 mm3. For this study, we use the pre-

processed data where slice time correction, motion correction

and detrending have been performed on the functional and

structural data using NeuroImage (AFNI) and NeuroImage

software (NIS), see [8] for further details.

During the data acquisition, the subjects were engaged

in a Virtual Reality task, in which they had to perform a

number of tasks, in an urban virtual reality environment.

The field work included, among others, the acquisition of

pictures of neighbors with piercings, the gathering of fruits

and weapons, and the avoidance of a growling dog. Each run

also includes 24 time series of natural stimuli or features over

704 TRs each, which had been convolved with a standard

HRF. The preprocessed fMRI data were spatially smoothed

with a 3D Gaussian kernel with full width at half maximum

(FWHM) of twice the voxel size as suggested by [1].

B. Data Analysis

The proposed approach is applied to subject 3 dataset in

a voxel-by-voxel basis. For our analysis, fixation periods are

extracted from the original data set leading to a total of

500 volumes to analyze in each run. Based on the struc-

ture of the design matrix two experiments are considered.

First, the design matrix is constructed following the frame-

work of Statistical Parametric Map (SPM) software (see

http://www.fil.ion.ucl.ac.uk/spm/). In this case, the design

matrix X ∈ R500×14 is constructed by considering thirteen

convolved stimulus/task function that are part of the features

set provided by PBAIC and a column vector consisting of

all ones that models the whole brain activity [1]. The set

of stimuli includes the following features vectors: Arousal,

Dog, Faces, FruitsVegetables, Hits, Instructions, InteriorEx-

terior, SearchFruit, SearchPeople, SearchWeapons, Valence,

Velocity, and WeaponsTools. Under this approach, a temporal

smoothing was applied to both data and model in order to

remove low frequency variations in signal (confounds) due

to artifacts such as aliased biorhythms and other drift terms

[1]. This highpass filter was implemented by mean of a DCT

basis set with harmonic periods up to a cutt-off of 1/128 Hz.

In the second experiment, predictors for confounds are

added to the design matrix and the all-ones column vector

is removed. Specifically, the thirteen DCT basis generated

above for filtering purposes are incorporated to X leadings

to a design matrix X ∈ R500×26. The model parameters
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(a) SPM (b) l0-LAD

Fig. 2. Activation maps for the Instructions feature. Slices 9 to 20 activated by both methods numbered from top to bottom and from left to right.

are then estimated by using the iterative ℓ0-LAD regression

algorithm described above. The parameter α and the number

of iterations are set to 0.95 and 100, respectively. After fitting

the model, for each voxel, contrast vectors to estimate signal

magnitudes in response to a single condition through cT βj

are used, where c is defined according to the stimulus task

function that we are interested in. For instance, to evaluate

the instructions task, all the components of the contrast

vector are set to zero but the sixth one that is set to one.

From zj = cT βj , it is possible to generate an activation

map either by using thresholding strategies or by selecting a

set of voxels with the most significant zj-values. Finally, for

comparison purposes the SPM software was used considering

the design matrix of experiment 1.

V. PRELIMINARY RESULTS

To illustrate the performance of the proposed method in

detecting activations the results of analysis for subject 14 run

1 are selected. Figure 2 shows the activation maps for the

Instructions task obtained with: 1) SPM software (Fig. 2(a)),

and 2) ℓ0-LAD regression method (Fig. 2(b)). In order to be

fair in the comparison, these maps are generated by selecting

the 300 most significant statistics, that is, 300 statistics z

for ℓ0-LAD regression method and 300 statistics t for SPM.

Note that a more elaborate approach that exploits the statistic

of non-activated voxels, as in SPM, can be used to set a

threshold parameter based on a target false alarm probability.

Under this condition, both methods activated 17 slices.

Although the activated slices are not exactly the same, the

number of matching activated slices is high. To be more pre-

cise 14 (slices 8 to 21) for a matching percentage of 82.35%

at slices level. At voxels level, however, the percentage of

matching is 53.33%. Additional slices activated by SPM are

5, 6, and 7, whereas our approach actives slices 2, 3 and 22.

From Fig. 2 it is possible to see that the activated regions are

similar in each one of the matching activated slices, although

the ℓ0-LAD regression method tends to exhibit more isolated

voxels than SPM which promotes clusterings. This behavior

is likely caused by the treatment of the temporal correlation

between residual errors that SPM does. SPM uses an iterative

estimation scheme which allows simultaneous estimation

of model parameters and autocorrelation (hyper)parameters.

The autocorrelation model used by SPM is an “AR(1)+white

noise” model, where AR(1) indicates an Auto Regressive

model of order 1 [9]. Despite these differences, it is clear

that the activated regions by ℓ0-LAD method are consistent

with those achieved by SPM. Furthermore, as expected for

this kind of stimulus, the activated areas detected by both

methods appear to be in the auditory cortex.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we combine the GLM model with the l0-

LAD regression method to exploit the inherent sparsity of

decomposing real fMRI signal as a sparse superposition

of elements of an suitable set. The proposed approach is

validated through the comparison with the SPM software

by using real data obtained from the PBAIC 2007. Results

demonstrate that the activated regions by our approach are

similar to those activated by SPM, although the clustering

patterns are slightly different and there exist more isolate

activated voxels than with SPM. The obtained results are

promising and constitute the starting point to elaborate a

more accurate technique. An approach that jointly exploits

sparsity and, at the same time, induces clustering in the

solution is under consideration as a future work.
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