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Abstract— This paper uses a symmetrical five-link 3D biped
model to computationally investigate the cause, function, and
benefit of gait asymmetry. We show that for a range of
mass distributions, this model has asymmetric walking patterns
between the left and right legs, which is due to a phenomenon
known as period-doubling bifurcation. The ground reaction
forces of each leg reflect different roles, roughly corresponding
to support, propulsion, and motion control as proposed by the
hypothesis of functional asymmetry in human walking. These
results suggest that natural mechanics could be responsible for
asymmetry in able-bodied walking, rather than neurophysio-
logical mechanisms such as leg dominance.

I. INTRODUCTION

Gait asymmetry is commonly observed in impaired walk-
ing, but growing evidence suggests that able-bodied walking
sometimes exhibits this behavior as well [1]–[4]. Understand-
ing when and why this phenomenon occurs is important to
human gait research, where symmetry is commonly assumed
in healthy control groups in order to simplify data collection
and analysis. Many methods exist for quantifying or defining
asymmetry between the right and left sides of the human
body, using variables such as stride/step length, joint range of
motion, velocity profiles, and ground reaction forces (GRF)
[5]. However, the underlying causes of gait asymmetry are
still the subject of debate (see [1] for a review).

The hypothesis of functional asymmetry in able-bodied
walking distinguishes the primary role of each leg as vertical
support/control and anterior-posterior (AP) propulsion [1].
Differences between leg functions were only observed during
fast walking trials in [3], suggesting that asymmetry is a
strategy for challenging locomotor tasks. This is exemplified
by asymmetries reported in athletic race walking [4], which
the authors suggested was an artifact of shoes or training
on curved tracks. Perhaps the most common explanation
for functional asymmetry is leg dominance, but conflicting
reports exist for this theory [1].

We proposed in the companion paper [6] that body
mechanics, rather than neural control mechanisms, are re-
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sponsible for functional asymmetry. We previously reported
asymmetric ground reaction forces in computational simu-
lations of planar “passive walking” models that use only
momentum and gravity to propel forward motion down a
shallow slope (kinematic variables were studied in [7], [8]).
Although the dynamical equations of motion may yield a
stable solution corresponding to a symmetric walking gait,
varying model parameters can cause a structural instability
at a bifurcation point, after which a new (stable) asymmetric
solution emerges from the (unstable) symmetric solution. The
symmetrical mechanics of these walking machines admit two
families of solutions, one symmetric and one asymmetric,
completely independent of motor control. However, this phe-
nomenon has not been shown to extend to high-dimensional
3D walkers that are more characteristic of human dynamics.

This paper examines the cause and function of gait
asymmetry in a symmetrical five-link 3D biped. Since most
bipeds in 3D do not have passively stable gaits, we adopt
the control strategy [9] that exploits passive motion in the
sagittal plane. We show that small symmetric changes in
leg mass distribution result in the emergence and growth of
asymmetry in kinematic and kinetic variables. We study the
role of each leg in the asymmetric gaits and find distinct
functions roughly corresponding to support, motion control,
and propulsion. These results show that under certain condi-
tions gait asymmetry is beneficial for dynamical stability,
suggesting that biped mechanics might explain functional
asymmetry in human walking.

We first define our dynamical model and gait symmetry.

II. FIVE-LINK 3D BIPED MODEL

The 3D model in Fig. 1 has two phases during single
support: knee-swing with six degrees-of-freedom (DOFs)
and knee-lock with five DOFs. The stance knee remains
locked through each step cycle. The biped walks on a flat
surface with sufficient static friction to prevent slipping at
the foot contact point. We model internal/external rotation
about the stance leg as an unactuated DOF with passive
viscous damping (e.g., from tissue or ground friction). This
reflects the fact that the human ankle provides actuation for
flexion/extension and inversion/eversion, but internal/external
rotation (i.e., yaw) is mostly passive [10].

This biped has coordinates q = (ψ,ϕ, θT )T in config-
uration space Q = R6, where ψ,ϕ ∈ R are respectively
the heading/yaw and roll/lean variables at the stance foot,
and vector θ = (θs, θt, θth, θsh)T contains the sagittal-
plane (pitch) variables for the stance leg, torso, swing thigh,
and swing shank, respectively. Knee-lock phase provides
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Fig. 1. Diagrams of the 3D biped’s hybrid system H (left), frontal and sagittal planes (middle), and controlled reduction (right). The control strategy
dynamically decouples the 4-DOF dynamics of the sagittal plane by reducing the yaw DOF of the transverse plane and the roll DOF of the frontal plane.

θth ≡ θsh. The hip abduction/adduction DOFs are fixed at a
constant angle ρ to simplify the control problem.

The system state is x = (qT , q̇T )T in domain D ⊂ R12,
the set of all states such that the swing foot height is non-
negative. We assume that both knee-strike and ground-strike
impact events are instantaneous and perfectly plastic, result-
ing in transitions between the six and five DOF dynamics
according to the hybrid system H of Fig. 1. The ground-
strike guard condition Gg is defined as the set of states in
D where the swing foot height is zero, and its reset map is
∆g. The knee-strike guard condition Gk is defined as the set
of states in D where θth− θsh = 0, and its reset map is ∆k.
The dynamics for each single-support phase have the form

M(q)q̈ + C(q, q̇)q̇ +N(q) = Bu, (1)

where M ∈ Rn×n is the mass/inertia matrix, C ∈ Rn×n

contains the Coriolis/centrifugal terms, and N ∈ Rn is the
vector of gravitational torques, n ∈ {5, 6}. Control input
u ∈ Rn−1 and torque map B ∈ Rn×n−1 model actuation at
every DOF except ankle yaw.

We adopt the geometric feedback control law1 from [9]
(depicted in Fig. 1) to produce 3D walking by effectively
decoupling the sagittal plane, thus inheriting the natural
passive mechanics. Walking gaits are cyclic and correspond
to solution curves x(t) such that x(t) = x(t+T ) for all t ≥ 0
and some minimal T > 0. These solutions define isolated
closed orbits in state space known as hybrid limit cycles,
which correspond to equilibria of the Poincaré return map
P : Gg → Gg. The return map represents a hybrid dynamical
system as a discrete-time system between impact events,
sending state xj ∈ Gg ahead one step to xj+1 = P (xj).

The biped model has bilateral symmetry across the sagittal
plane – the hybrid dynamics during left leg stance exactly
mirror that of right leg stance (with opposite signs for hip
width w and angle ρ). A symmetric periodic solution x(t)
has a fixed point x∗ = P (x∗), where map P implicitly

1The control strategy exploits symmetries to decompose the biped dy-
namics into lower-dimensional control problems [9]. We design momentum
conservation laws that stabilize yaw and lean/roll. These conservation laws
can be expressed as nonholonomic constraints Jc(q)q̇ = b(q) yielding a
reduced-order system corresponding to the decoupled sagittal plane.
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Fig. 2. Steady-state step length over mass ratio.

accounts for bilateral symmetry by flipping the signs of
out-of-plane variables (ψ,ϕ, ψ̇, ϕ̇) and parameters w, ρ. A
periodic solution that is asymmetric has a period greater than
one, i.e., x∗ 6= P (x∗), requiring multiple compositions of the
return map to find a fixed point x∗ = P k(x∗), for k > 1.

We verify orbital stability of a fixed point x∗ of the system

xj+k = P k(xj), (2)

k ≥ 1, by approximating the linearized map ∇xP
k(x∗)

through simulation [7]. This yields a discrete linear system
that is exponentially stable if and only if the magnitudes
of the eigenvalues of ∇xP

k(x∗) are strictly less than one. If
any absolute eigenvalue is greater than one, x∗ is an unstable
solution of (2). This case also corresponds to cyclic walking,
but small perturbations can cause large deviations from the
solution trajectory (e.g., falling).

For the simulations to follow, we adopt human-like pa-
rameters Mh = 14.11 kg, Mt = 17.61 kg, m = 13.5 kg,
mth = µm, msh = (1 − µ)m, `t = 0.55 m, ` = 1 m,
α = 0.5, w = 0.2 m, and ρ = 0.0564, where µ is the mass
distribution between the thigh and shank of each leg. We will
vary the parameter µ to obtain asymmetric gaits.

III. SIMULATION RESULTS

Similar to the passive planar biped considered in the
companion paper [6], the mechanics of our 3D biped admit
a symmetric and asymmetric family of gaits based on mass
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Fig. 3. Steady-state step velocity (left), total energy (middle), and impact energy dissipation (right) over mass ratio.
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Fig. 4. Steady-state GRF impulse over mass ratio: vertical (left), anterior-posterior (middle), and absolute mediolateral (right). Impulses are calculated by
integrating the GRF vector (over the entire step period for vertical, after midstance for AP and ML) and normalizing by Mtotalg

√
`/g to be dimensionless.

ratio µ. The steady-state gait is symmetric and stable for a
wide range of ratios less than µ = 0.76. The symmetric gait
becomes unstable for ratios larger than µ = 0.76, splitting
into a stable asymmetric gait that is cyclic every two steps
with a long and short stride. We then observe stable 4-step
asymmetric gaits after the second bifurcation at µ = 0.763,
where the 2-step family becomes unstable. We observe non-
cyclic gaits with eventual falling for µ larger than 0.764.

The functional characteristics of these gaits are visualized
in the bifurcation diagrams of Figs. 2-4, which show the
steady-state evolution of so-called “gait descriptors” (vari-
ables of the stable gait) as µ is varied. We show a limited
range of mass ratios around the bifurcation points, where the
most interesting behavior occurs. Asymmetric solutions have
two or more branches showing the descriptor for each step
cycle in the gait, and the averaged descriptors of asymmetric
solutions tend to follow the (unstable) symmetric solution.

We see in Fig. 2 that the symmetric solution’s step length
grows slowly with mass ratio. Gait speed, i.e., step length
divided by time period, remains nearly constant in Fig. 3,
whereas the impact energy dissipation monotonically in-
creases until the first bifurcation reverses this trend. The total
mechanical energy at the end of each step cycle increases
monotonically over the entire range. Integrating the GRF
vector for each step cycle, we find in Fig. 4 that the AP
and vertical impulses follow a monotonic decreasing trend
whereas the mediolateral (ML) impulse is approximately
sinusoidal over the range of symmetric gaits.

The eigenvalues of the return map between steps character-
ize a mathematically meaningful definition of gait stability.
In fact, the maximum absolute eigenvalue is an inverse
scale for stability between zero and one: a smaller value
implies faster attenuation of perturbations in some local
region around the nominal joint trajectory. We find in Fig.
5 that some asymmetric gaits after the bifurcation point are

more stable than symmetric gaits before the bifurcation point
(e.g., 0.532 at µ = 0.762 versus 0.673 at µ = 0.757). The
maximum absolute eigenvalue of the 4-step asymmetric gait
also drops significantly after the 2-step gait becomes unstable
at the second bifurcation point. We see that there are multiple
local stability minima within the range of walking gaits,
where the global minimum resides in the symmetric family.

IV. DISCUSSION

These simulations show that symmetric changes in physi-
ology can directly cause asymmetry to emerge from bipedal
mechanics. We used a control strategy that embraces the
natural dynamics of the sagittal plane, so we argue that these
passive dynamics are responsible for the asymmetry as with
the uncontrolled planar biped of [6].

We find one monotonic relationship between bifurcation
parameter and average gait descriptor that agrees with the
observations in [6], suggesting that total energy plays a
fundamental role in the emergence of asymmetry. Period-
doubling behavior may be a natural way for the body
mechanics to compensate for an excess of energy in the
gait (e.g., fast walking). This observation is experimentally
supported by a test of the functional asymmetry hypothesis
[3], where asymmetry was observed in AP impulses only
during fast walking. However, a causal relationship is dif-
ficult to prove because multi-period solutions to nonlinear
hybrid dynamics generally cannot be solved analytically.

The hypothesis of functional asymmetry proposes distinct
biomechanical functions of the legs [3], where one con-
tributes more to propulsion and the other to body-weight
support/transfer and motion control [1]–[3]. The asymmetric
family of solutions in Figs. 3 and 4 shows that each leg
contributes different impulses per step cycle and dissipates
different energy at double-support transitions. This is mani-
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Fig. 5. Maximum absolute eigenvalue over mass ratio (left). Vertical (middle) and mediolateral (right) ground reaction forces for the period-2 asymmetric
gait of µ = 0.763, where the second step cycle is shifted to coincide with the first step cycle for visual comparison. A supplemental movie of this
asymmetric simulation is available at: http://vimeo.com/22420529

fested in the reaction forces as seen in the asymmetric gait
of Fig. 5. The first stance phase provides lean control with
a ML impulse 106% greater than the second. We see less
distinction in the support and propulsion functions, as the
vertical and AP impulses of the second leg are both 1%
greater than the first leg (note the clearer distinction for
the period-4 gait). This suggests that the function of control
might be performed by a distinct leg, whereas support and/or
propulsion need not be isolated to one respective leg.

For walking gaits beyond the first bifurcation point,
the asymmetric solution is trivially more stable than the
unstable symmetric solution (Fig. 5). Both correspond to
cyclic walking motion, but walking symmetrically requires a
different control strategy to attenuate perturbations. If these
characteristics indeed hold for human walking, asymmetries
observed in able-bodied studies might be explained in part
by humans attempting to maximize stability. The leg corre-
sponding to each biomechanical function may be influenced
by limb dominance, but our simulations suggest that an
asymmetric walking strategy is dynamically beneficial under
certain conditions and human neurophysiology might have
developed to exploit this fact.

It is important to note that healthy humans appear to
limit gait asymmetry. A study on able-bodied children and
young adults did not find any noticeable changes in kinematic
and temporal symmetry variables as a function of walking
speed [11]. Kinetic asymmetry was only observed during
fast walking in [3]. The motor control system may enforce
symmetry in all but the most challenging tasks for more than
aesthetic reasons – unbalanced strain on joints and muscles
over time can lead to musculoskeletal deterioration [5].

V. CONCLUSIONS

We observed functional gait asymmetry in simulations
of a symmetrical 3D biped after small changes in a mass
distribution parameter for both legs. In fact, asymmetric
walking was the only stable strategy for a range of phys-
iological conditions. Reaction force impulses of the 2-step
asymmetric gaits indicate that the ML control function was
mainly provided by one leg, but vertical support and AP
propulsion were shared nearly equally by both legs.

This offers insight into the possible divisions of leg
function in able-bodied gait: control can be performed by a
distinct leg, whereas support and/or propulsion need not be

isolated to one leg. Different asymmetric and functional be-
havior might be observed when varying other parameters (see
[6] for a planar environmental case). We argue that period-
doubling bifurcation, also known as spontaneous symmetry-
breaking, might explain in part the phenomenon of functional
asymmetry and why it only appears in certain tasks.

These results motivate a new line of inquiry into the role
of human motor control in suppressing gait asymmetry. This
also suggests a number of hypotheses for the pathophysiol-
ogy of abnormal asymmetry, which may inform treatments to
restore symmetry. For example, the neurological state change
associated with stroke or cerebral palsy might render the
motor control system unable to inhibit the natural tendency
of biped mechanics to facilitate asymmetry. This motivates
investigation of novel therapies that constrain or challenge
the subject’s control system such that the asymmetric family
of gaits is no longer optimal for stability.
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