
 
 

 

  

Abstract— Gait stability is primary in assessing individuals 
with high risk of falling, particularly the elderly. Custom made 
self-adjustable wireless gyroscope suit is used as a sensing 
device to quantify gait stability. A nonlinear time series analysis 
i.e. maximum Lyapunov exponent (λ*) was employed to 
estimate the short term and long term stability and it is closely 
related to the ability of human neuro-muscular control system 
in maintaining gait stability. Experimental analysis and tests 
validated the efficacy of this novel approach. The results 
achieved are comparable with the findings of multiple 
kinematic and dynamic parameters derived from optical 
motion capture system and force platform which are widely 
used as gold standard. 

I. INTRODUCTION 
ETERIORATION of the ability of an individual to 
walk in a repetitive and stable manner is a sign of 

many pathological conditions [1]. Hence, walking stability is 
one of the important factors in human gait analysis. Walking 
stability or gait stability is generally referred as the ability of 
human body to maintain functional locomotion despite the 
presence of small kinematic disturbances or control errors 
[2].  

In recent years, many researchers had attempted to 
investigate and to quantify human gait stability. In previous 
studies, magnitude of kinematic variability was often 
regarded an estimate of gait stability [3]-[7].  However, little 
evidences can be found to support this assumption [8]-[9]. 
Gait stability derived from kinematic variability only 
quantifies the average differences between strides, 
independent of the temporal order, in which the strides 
occur. It also does not contain information on how the 
locomotor control system responds to perturbations either 
within or across the strides [8]-[11]. Moreover, it is also 
limited by its ability to quantify and provide a discrete 
measure to represent all data points [9].  

Due to these reasons, tools from nonlinear dynamical 
system theory were proposed to examine the point-to-point 
fluctuations in movement trajectories throughout the gait 
cycle [2],[8]-[9],[11]. Although the fluctuations in 
measurement data are often described as error or noise in a 
system, nonlinear dynamical system theory provides a 
different explanation. It proposes that the fluctuation might 
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be a consequence of the dynamic self-organization of a 
complex system. The most popular tool derived from this 
theory is the maximum Lyapunov exponent (λ*). Dingwell 
and Kang examined gait stability of older adults using λ* 
[9].  

Despite its wide clinical applications, the kinematic 
variables used to estimate λ* are generally derived from the 
optical motion capture system [2],[9],[12]-[17]. Although it 
is considered as gold standard in capturing human motion, 
optical motion capture system is expensive, bulky and 
difficult to operate. With the recent advances in MEMS 
technology, miniature sensors such as accelerometer, 
gyroscope, and magnetometer started to gain its popularity 
among clinicians, biomechanists and researchers as a simple 
and inexpensive alternative to measure human motion in 
various activities. Miniature inertial sensors are small, light, 
and can be easily mounted on human body without hindering 
human motion [18].  

The goal of this study is to explore the advantages 
offered by the miniature sensor, particularly gyroscope to 
estimate human gait stability. This paper investigated 
whether kinematic variable i.e. angular rate measured by 
gyroscope can be used to determine λ*. This paper also 
demonstrates how abnormal gait simulated by placing a 
weight on one side of the limbs can affect λ* and induce gait 
instability.  

II. WIRELESS GYROSCOPE SUIT 
In this research, a wireless gait monitoring system was 

developed to measure the angular rate of human lower 
extremity during walking. Custom made self-adjustable 
wireless gyroscope suit with four wireless gyroscopes 
(Wireless Inertia-Link from Microstrain, Inc.) were placed 
on right thigh, left thigh, right shank and left shank as shown 
in Fig. 1. Each gyroscope has a sampling rate of 200 Hz and 
measuring range of ±5.235 rad/s with bias stability ±0.00349 
rad/s and nonlinearity of 0.2%. Each wireless gyroscope has 
an onboard microprocessor performing fundamental data 
filtering therefore no jitter is expected in the data. It is 
important to mention that no further data filtering is 
performed to retain spatio-temporal fluctuation and 
nonlinearities of the signals [2], [19].   
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Fig. 1. Wireless gait monitoring system setup 

A gait suit was designed to firmly hold the wireless 
gyroscopes on subject’s lower extremity during walking, 
hence minimizing the measurement errors. This suit is made 
of bulk straps and VelcroTM straps. Each sensor is placed on 
top of a bulk strap. Length of the bulk straps can be altered 
according to the length and circumferences of subject’s thigh 
and shank by unlocking and adjusting the buckler lock and 
buckler, as illustrated in Fig. An adjustable gait suit allows 
subject with different anthropometric properties to be able to 
wear it comfortably without hindering subject’s lower 
extremity motion during walking.  

III. ESTIMATION OF MAXIMUM LYAPUNOV EXPONENT 
The gait monitoring system was operated using a 

software developed under LabVIEW programming platform. 
This software incorporates real-time data streaming and data 
recording functionalities based on Inertia-Link data 
communication protocol developed by Microstrain Inc. It 
also incorporates several offline processes utilizing tools 
available in TISEAN (Time Series Analysis) package to 
estimate λ* [20]. 

When this system is in operation, each wireless 
gyroscope continuously transmits the measurement data to 
the workstation. Once the data collection is completed, 
Hybrid Multi-resolution Wavelet Decomposition (HMWD) 
technique is applied to the shank angular rate in order to 
identify the occurrences of heel-strike and toe-off in every 
stride. Since the first 30 continuous strides are required to 
estimate λ* [2], the measurement data lie between 2nd heel-
strike and 32nd heel-strike are considered only. (As a 
standard in human gait analysis, the first heel-strike is 
omitted).  

Given that the time to complete one gait cycle varies 
depending on the walking velocity while the sampling rate is 
fixed, segmented angular rate of the thigh and shank may 
have different data length. Therefore, measurement data of 
the first 30 strides are linearly interpolated to 3000 data 

points. This approach preserves the stride-to-stride temporal 
variation which is one of the important elements of 
Lyapunov stability analysis [1]. It also normalizes the 
measurement data such that the numbers of data points per 
stride are similar for every experiment.  

Two important parameters are needed to estimate λ*: 
the embedding dimension (dE) and the time delay (τ). In this 
study, τ was calculated from the first minimum of the 
Mutual Information (MI) of the data [21].   
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Fig. 2. Determining the first minimum from MI (a) 

Thigh and (b) Shank of Participant A during walking at 
speed 3 km/h 

 
Where Ph and Pk denote the probabilities that a time 

series value xi in the hth and kth bin respectively and Ph,k is 
the joint probability that xi is in bin h and xi+τ is in bin k. 
Choosing the first minimum from MI provides appropriate τ 
with minimum redundancy. In this study, the first minimum 
was found to be ranging from 10 to 20 samples as shown in 
Fig. 2.. For consistency of the analysis, the mean time delay 
of τ = 14 sample was selected and applied to all 
reconstructed state space.  

False Nearest Neighbors (FNN) analysis is used to 
calculate dE. FNN compares the distances between 
neighboring trajectories in the reconstructed state space at 
successively higher dimensions. Given a point p(i) in the m-
dimensional embedding space , p(j) is p(i) nearest neighbor 
if the normalized distance Ri is smaller than a given 
threshold Rt. p(i) is marked as having a false nearest 
neighbor if Ri is larger than Rt. Ri can be computed as 
follows in (2). 
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The selection of dE is based on the percentage of false 
neighbors’ approaching zero to provide a sufficient number 
of coordinates that define the system state at all points in 
time. The results of FNN analysis are presented in Fig. 3 
[22]. 
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An embedding dimension of dE = 9 was selected 
because the percentages of false neighbor were less than one 
percent for both thigh and shank.  

 

Fig. 3. FNN analysis results of (a) Thigh and (b) Shank 

Lyapunov exponents quantify the average exponential 
rate of divergence of neighboring trajectories in the state 
space. They are a sensitivity measure of a system to 
infinitesimal perturbation. For a complete description of the 
effects to such perturbation, the system needs to be described 
in all directions of the reconstructed state space thus yields 
to multiple Lyapunov exponents,  which are called 
Lyapunov spectrum [23]. However, in practice, analysis of 
the dynamic stability is restricted to λ* because the behavior 
of entire system is dominated by λ*. In gait analysis, the 
main significance of λ* is that it provides a direct indicator 
of human body dynamic stability [1]-[3]. It is defined as 
follows in (3). 

ln ( ) ln *( )j jd i C i tλ≈ + Δ       (3) 

Where Δt is the sampling time (t = iΔt), dj(i) is the 
Euclidean distance between the jth pair of nearest neighbors 
after ith discrete time steps and Cj is the initial separation 
between the jth pair of nearest neighbors. The jth pair of 
nearest neighbors at the ith discrete time step is obtained by 
pairing a data point of a reference trajectory after fixing the 
ith discrete time step and with another data point of the jth 
nearest neighbor trajectories in the whole range of data. 
Using the algorithm proposed by Rosenstein et al. [23], λ* 
can be found by estimating the linear slopes of the curves 
generated by (4). 

1( ) ln ( )y i dj i
t

=
Δ

      (4) 

Where 〈.〉 denotes the average over all values of j. Since 
each subject exhibited a different average stride time, the 
time axes of these curves are rescaled by multiplying the 
average stride frequency of each subject. A graphical 
illustration on how to estimate λ* is depicted in Fig. 4.  

 

 

 

 

Fig. 4. Schematic representation of local dynamic stability 
analysis. (a) original time series data i.e. shank angular rate 
(b) reconstructed state space with embedding dimension dE 
of 3 and time delay τ of 10 (c) A closer view of a section of 

the reconstructed state space; for each data point, the  nearest 
neighbor is calculated and divergence from this point was 

calculated as dj(i). (d) Average logarithmic rate of 
divergence, from *

Sλ  and *
Lλ  which are determined. 

Two different time scales [9],[13],[15] are used to 
estimate  λ*. Short-term λ* ( *

Sλ ) is calculated from the slope 
of a linear fit to the divergence curve between zero and one 
stride. Long term λ* ( *

Lλ ) is calculated from the slopes 
between four and ten strides. Periodic systems result in zero 
or negative λ*, whereas non periodic or random systems 
result in a positive λ*. Systems that are more dynamically 
stable exhibit lower λ* values whereas systems that are less 
dynamically stable exhibit higher λ* values [11]-[12] and 
[14]. 
 

IV. EXPERIMENTAL STUDY 

A. Participants 
Eleven healthy individuals (Age: 25.3 ± 1.7 years old; 

Height: 173.9 ± 4.8 cm; Weight: 70.5 ± 9.3 kg) were 
recruited from Monash University Sunway campus. 
Participants with known gait abnormalities were excluded. 
Participants were briefed on the purpose of the study and its 
procedure before they gave their consents. The experimental 
procedures were carried out based on the approval given by 
Monash University Human Ethic Committee.  

B. Experimental Procedures 
Two experimental sets were conducted in this study. In the 

first set, participants were requested to walk on a treadmill at 
the speed of 3 km/h, 4 km/h and 5 km/h for duration of one 
minute. Participants were allowed to rest in between 
experiments for a maximum of three minutes. Only one trial 
was recorded on every experiment.  
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In the second set, participants were requested to load their 
lower shank and walked on the treadmill at the speed of 3 
km/h, 4 km/h and 5 km/h for one minute. Loading one of the 
limbs was intended to change the inertial properties of the 
loaded limb hence altering the spatio-temporal parameters of 
the loaded limb during walking. This study selected 2.5 kg 
load to be placed on the left or right lower shank to induce 
abnormal gait. As reported in [17], 2.5 kg load shall alter 
both timing and magnitude of the lower limb kinematic 
parameters.  

C. Statistical Analysis  
One way ANOVA was performed to examine the 

statistical differences of λ* in different walking conditions. 
The alpha level/statistic significance, α was set at 0.01. If the 
null hypothesis is rejected, Tukey-Kramer multiple 
comparison test is conducted to assess the differences 
between each level of that factor.  

 

V. RESULTS 
One of the significances of these results is the linear 

relationship between walking speed and *
Sλ . When 

participants walked at speed of 3 km/h, *
Sλ  for thigh and 

shank were ranging from ≈0.30 to ≈0.44 and from ≈0.63 to 
≈0.74 respectively. When the participant walked at speed of 
5 km/h, *

Sλ   for thigh and shank increased and were found to 
be ranging from ≈0.30 to ≈0.45 and from ≈0.75 to ≈0.87 
respectively.  Similar observations were found in other 
experimental results, particularly when participants walked 
with a load placed on one side of the limbs. These findings 
were consistent with the results reported in [2], [13].  

However, when a load was placed on one side of the 
limbs, the loaded limb exhibited smaller *

Sλ  whereas the 

non-loaded limb exhibited greater *
Sλ  with p < 0.01. These 

results were expected as over short period of time, 
particularly during the first few strides, participants’ 
neuromuscular locomotor system tried to maintain walking 
stability despite the significant differences between left limb 
and right limb inertial properties.  

Different behavior was exhibited in *
Lλ . No statistical 

differences were found in *
Lλ  (p > 0.01). These were 

anticipated as walking on a treadmill could reduce gait 
variability hence improving participants’ walking stability 
[8]. More importantly, over long period of time, the 
participants’ neuromuscular locomotor systems might have 
accustomed to the load placed on either side of the limb. 
Thus, they did not encounter much difficulty in maintaining 
walking stability. These results agreed with findings reported 
in [9] and [13]. 
 

It is important to note that based on the comparison of 
the similar walking speeds, one can notice that *

Sλ  and *
Lλ  

found in thigh were smaller than *
Sλ  and *

Lλ  found in shank 

(p<0.01).These results were expected as the superior body 
segment i.e. thigh was less sensitive to small perturbations, 
thus its motion was more stable than the inferior body 
segment i.e. shank. These results were consistent with 
findings reported in [13] and [14]. 
 

VI. DISCUSSION 
Optical motion capture system and force plates are the 

common methods to quantify human motion during walking. 
However, these approaches pose several limitations. They 
have to be properly calibrated prior to an experiment. They 
can only capture human motion in a laboratory environment. 
Due to these limitations, wireless gyroscope was proposed to 
capture human lower extremity motions in real-time. Unlike 
conventional instruments, gyroscope is inexpensive, small, 
light-weight, and relatively easier to use. It produces similar 
results regardless of the minor differences in the attachment 
sites on human body. Lastly, it is suitable for wearable 
applications that continuously monitor human’s gait. 

Equipping the gyroscope with wireless technology also 
offers additional advantages. It allows the subject to move 
freely without being obstructed by wires that connect the 
sensors to the workstation. Subject’s movement space is also 
not restricted by the length of the wires. This technology 
enables the motion to be captured in both indoor and outdoor 
environments.  

Since human walking is not strictly periodic, traditional 
linear analysis may not be a suitable tool to examine human 
gait [12]. This analysis can diminish the true structure of 
kinematic/dynamic variability when few strides are averaged 
to produce an overall picture of a person’s gait. Moreover, 
temporal variations of the gait may be lost. On the other 
hand, nonlinear analysis i.e. λ* provides better illustration on 
how these variations change over the time [8],[11]-[12]. λ* 
can estimate human dynamic stability during walking by 
measuring the local divergences of human motion in a state 
space. More importantly, λ* can quantify how the 
neuromuscular locomotor system responds to perturbations. 
For these reasons, many researchers have adopted this 
approach [8],[11],[14] and [16]. Their findings suggested 
that positive λ* was an indication of chaotic characteristic 
lying between completely periodic and completely random 
characteristics. Lower positive implied that human lower 
extremity exhibited higher resistance to stride-to-stride 
variability and was less flexible and adaptable when 
variations from one stride to another occurred. 

Two different time scales i.e. *
Sλ  and *

Lλ  were 
determined to quantify walking stability. Short-term stability 
is represented by *

Sλ  because it only examines the stability 
over the first gait cycle. Long-term stability is represented by 

*
Lλ as it evaluates the stability over the fourth to the tenth 

gait cycles. Despite using different method to capture human 
motion during walking, the experimental results are similar 
to the findings reported in [2][13]. All participants exhibited 
lower *

Sλ  for both thigh and shank when they walked 
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slower. They exhibited larger 
*
Sλ  when they walked faster. 

Thus, it can be deduced that the human neuromuscular 
locomotor systems can control kinematic disturbances better 
during slow walking than during fast walking [2]. These 
results agreed with basic perception that individuals with 
higher risk of falling walk slower to improve their stability 
[13]. However, *

Lλ  exhibited different behavior, *
Lλ  had the 

lowest values when the participants walked at speed of 4 
km/h. These results signified that over the long period of 
time, participants controlled their neuromuscular locomotor 
system better when they walked at this speed. In the second 
experimental set, when abnormal gait was simulated, loaded 
limb exhibited lower *

Sλ  and then *
Lλ  than the non-loaded 

limb. These results suggested that due to changes in the 
loaded limb inertial property, non-loaded limb 
neuromuscular system was challenged to balance the 
perturbations induced on the other limb, which in turn 
increased both *

Sλ  and *
Lλ of the non-loaded limb.  

VII. CONCLUSION 
The results achieved prove that the angular rate of 

human lower extremity shall be a valid kinematic parameter 
to estimate λ*. It also derives a normative baseline for young 
and healthy individuals who walk at different speed i.e. 3 
km/h, 4km/h and 5 km/h. With this baseline, this system is 
expected to employ in clinical research to assist clinicians 
and biomechanists in order to analyze the influences of *

Sλ  

and *
Lλ  in walking stability, particularly on which 

neuromuscular locomotor system is responsible for the 
changes in *

Sλ  and *
Lλ , hence permits clinicians and 

biomechanists to conclude appropriate strategies that can 
improve human gait stability and reduce the risk of falls in 
the elderly.  
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