
 

 

 

 

Abstract— In motor nerve conduction studies, important 

diagnostic information is provided by the late-wave responses, 

comprised of F-waves, A-waves, and repeaters.  Late-waves in 

addition to contamination from power line interference and 

baseline disturbance, are of low amplitude and random in 

nature. This makes computer-based analysis of late-wave 

activity very challenging, especially the computer-based F-wave 

onset latency assignment. Currently available algorithms assign 

latency independently on a trace-by-trace basis without 

considering the information present in an entire ensemble of 

traces. A novel algorithm that takes into account the ensemble 

information for segmenting and classifying regions of late-wave 

data is described in this paper, which in turn can be used to 

improve the performance of computer-based F-wave onset 

latency assignment. 

 

I. INTRODUCTION 

 

erve conduction studies (NCS) serve as an important 

tool in assessing the integrity of the peripheral nerves 

[1, 2, 7]. In motor NCS, an electrical stimulus is used to 

locally depolarize a short segment of the motor nerve.  If the 

depolarization is of sufficient magnitude, a compound action 

potential is induced in a number of axons within the nerve, 

which propagates both distally and proximally from the point 

of stimulation.   

The distally-propagating (orthodromic) compound action 

potential reaches the muscle and activates neurotransmitter 

release at the neuromuscular junction, causing muscle 

contraction.  The resulting electrical activity measured at the 

muscle is referred to as compound motor action potential 

(CMAP).  Normally, the latency and morphology of CMAP 

remain stable from one stimulus to the next.   

The proximally-propagating (antidromic) compound 

action potential reaches the spinal cord, causing a small and 

random fraction of the motor neurons to “backfire”, resulting 

in a new, distally-traveling compound action potential that 

travels back to the muscle.  The responses of the muscle due 

to this back-propagating action potential are called F-waves 

[4].  Unlike CMAP, the latency and morphology of F-waves 

typically vary significantly from one stimulus to the next.  

Because only a small fraction of the neurons participate, F-
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waves are much smaller in amplitude than CMAP. 

F-waves are the most common type of “late waves” (so-

named as they arrive after the CMAP).  In some subjects, a 

small set of neurons (called “Repeaters”) have a high 

probability of backfiring and produce features with similar 

morphology across multiple recordings.  In other subjects, 

axonal branching may exist.  This branching produces 

waveform components that repeat with constant latency 

across multiple recordings. These constant feature 

components usually occur before the F-waves and are often 

referred to as A-waves. Repeaters and A-waves can be 

important indicators of neuromuscular pathology along the 

full length of the nerve, and are grouped together in this 

paper as both lead to repeating waveform features.  

In traditional NCS, the detection and classification of late-

wave activity is done manually or with the aid of simple 

computer algorithms [3, 6].  A physician will assign or 

confirm F-wave latencies and note the existence of any A-

waves or Repeaters.  In recent years, technological advances 

have led to the introduction and large-scale adoption of 

point-of-service NCS testing [1], which in turn need 

algorithms that can automatically and accurately analyze 

late-wave data.   

Late-wave analysis is complicated by the random nature 

and low amplitude of late waves. Currently available 

algorithms [4] assign latency independently on a trace-by-

trace basis without considering the entire ensemble of traces.  

As a consequence, such algorithms are vulnerable to 

fasciculation and other artifacts. In addition, they are counter 

intuitive to the way human experts would manually analyze 

the data, who typically examine the entire ensemble of traces 

to identify regions of consistent activity before assigning 

latency on each trace.  

We addressed this issue in our previous work [5], where 

we developed a segmentation approach to analyze the entire 

ensemble of traces and identify portions of the data with 

consistent late-wave activity, followed by clustering-based 

approach to classify segments as F-wave or A-

wave/Repeater.  

However, different sets of features were being used to 

calculate F-waves and A-waves separately, which was 

computationally very intensive and needed several 

parameters. In addition, the clustering approach was very 

demanding, both in terms of algorithm complexity and 

computational resources. In this paper, we present a recently 

developed technique, which is much simpler in terms of 
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number of parameters and algorithm complexity, and is 

much faster and gives comparable performance.  The 

algorithm follows a systematic and streamlined approach. In 

addition, the clustering method used to classify segments 

depends on fewer features and is much simpler. 

II. METHODS  

A. Data 

The NCS data used in this study were acquired with 

ADVANCE
TM

 developed by NeuroMetrix, Inc (Waltham 

MA 02451 USA). Integrated pre-configured electrode arrays 

with stimulator, detector, and reference electrodes are used.  

A constant current stimulator is used. Data processing is 

done on the device using algorithms that analyze waveforms 

and adjust stimulus current. 

During testing, the stimulator current and amplitude are 

adjusted until the CMAP response reaches a maximal level.  

This indicates that the stimulus is sufficient to excite all 

motor fibers in the nerve.  Once the maximal level is 

determined, a series of stimuli are applied.  A recording is 

made which includes both the CMAP and late-wave time 

periods.  Late-wave data are digitally downsampled to a 5 

kHz sampling rate. The late-wave signals are collected to 

form an ensemble of late-wave traces (see Figure. 1 for 

example). The number of traces collected depends on the 

nerve being analyzed (10 for upper extremity nerve and 16-

32 for lower extremity nerve). 

A set of 406 late-wave datasets was collected, consisting 

of approximately 100 tests each from median, ulnar, 

peroneal, and tibial nerves.   

B. Preprocessing steps 

Late-waves may be distorted by the presence of power line 

contamination and/or baseline disturbance resulting from 

residual CMAP activity.  Preprocessing is done to remove 

these sources of contamination. Figure 1 shows an example 

of contaminated late-wave data along with the results of 

preprocessing.  

Due to overlapping spectra of power line interference 

(PLI) and late waves,  any linear bandstop filter with non-

zero bandwidth will affect the morphology of late waves.  As 

an alternative, the phase and amplitude of a sine wave at the 

PLI fundamental frequency are estimated from the signal-

free region of the trace to obtain least-squares fit, which is 

then subtracted from the entire trace. 

Baseline disturbances (BD) are the most significant source 

of contamination, especially for upper extremity nerves.  BD 

is due to residual CMAP activity, which has significantly 

higher amplitude than late waves and have relatively 

consistent morphology as described earlier.  As a result, the 

BD tends to be stable across traces which can be exploited in 

estimating the BD shape. BD removal is important as 

otherwise the algorithm might incorrectly identify the 

consistent BD features as A-wave/repeater activity.  

BD is estimated using a weighted least-squares fit to a 

piecewise polynomial model, where in the fit is weighted by 

the 1/
2
 (

2 
is variance of same time samples across all the 

traces) to avoid fitting the BD model to regions where F-

waves may be present. Relatively low order polynomials (5
rd

 

– 6
th

 order) are used to prevent the polynomial fit from 

introducing artificial late-wave features.  The break-point 

between piecewise polynomial sections is found by detecting 

an onset of overall F-wave activity ascertained from 
2
.  

 

 
Fig. 1 An ensemble of late-wave traces with BD.  The ensemble is shown 

before (left panel) and after preprocessing (right panel).   

C. Segmentation 

As depicted in Figure. 2, preprocessed data are fed into 

the segmentation algorithm which detects and classifies late 

wave data into A-waves and F-waves.  The entire algorithm 

is inspired by the way a human expert analyzes the late-wave 

data. The expert begins with finding groups of “consistent” 

regions, followed by identifying regions with similar or 

variable activity. The regions with high similarity are labeled 

as A-waves and regions with little or no similarity are 

labeled as F-waves. Each test consists of at the most only one 

F-wave segment and zero or more A-wave segments. 

In the first step, we calculate an activity measure to identify 

regions of consistent activity. The activity measure A is 

calculated for each time n instant by computing the 

arithmetic mean of the absolute value of data across traces 

(total L traces) at that instant as 
L

i

niX
L

nA
1

,
1

1
)(      (1), 

followed by smoothing with a moving-average (boxcar) 

filter; i is the trace index. Samples that are consistent across 

traces will have high activity measure values. The activity 

measure is then adjusted for noise floor by subtracting a 

noise estimate. A threshold (equal to minimum of a preset 

threshold and a percentage of maximum activity value) is 

applied to the adjusted activity measure to find consistent 

and distinct regions.  
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Fig. 2 Segmentation process. 

 

The activity measure is converted into a Boolean sequence 

of ones and zeros by comparing the measure against the 

above threshold; samples that exceed the threshold are the 

qualifying samples. Morphological operation of dilation is 

done to fill any narrow gaps between groups of qualifying 

samples, followed by an erosion operation to discard very 

narrow groups. All contiguous groups of qualifying activity 

samples are identified, where each group constitutes a 

segment. The beginning and the end of each segment is 

adjusted to the local minima of the activity measure to ensure 

that the entire duration of segment is captured and each 

segment is complete in itself. Finally, only the segments that 

meet minimum duration requirement and have sufficient 

persistence are retained, where persistence is defined as ratio 

of number of traces with global peak-to-peak amplitude 

above certain threshold to the total number of traces. 

Once segments have been identified, the portions of the 

traces within each segment (“sub-traces”) are grouped into 

clusters based on their morphological similarity.  This 

similarity is quantified using a set of features calculated from 

each sub-trace. The features include global peak-to-peak 

amplitude, root-mean-squared value (RMS), wave period 

(Tp), center of mass (Cm), and best peak. Global peak-to-

peak is the difference between maximum and minimum value 

within each sub-trace; RMS for each sub-trace is calculated 

by squaring all the values, followed by finding the arithmetic 

mean of the squared values, and finally finding the square 

root of the mean value; Tp is calculated as 

Tp = 

y

x

RMS

RMS

2

1
      (2), 

where, x is a sub-trace, and y is a derivative of x 

approximated as the first-order difference. Cm is calculated 

as  

   Cm = 

i

i

i

i

x

ix

||

|.|

      (3), 

where i is the sample index. Best peak is calculated by 

finding the indices corresponding to global maximum and 

global minimum within each sub-trace, followed by finding 

the index with a larger absolute value.  

     Sub-traces are clustered using the above set of features 

and based on persistence, cluster energy (calculated as ratio 

of sum of squared values of the sub-traces within the cluster 

to the sum of squared values of all the sub-traces within the 

segment), and global peak-to-peak amplitude of the sub-

traces within each segment. A segment is classified as 

“similar-high”, “similar-low”, “similar-noisy”, and “not 

similar”. A segment - is classified as “similar-high” if sub-

traces are highly similar, have global peak-to-peak amplitude 

above a certain threshold, and have high cluster energy; as 

“similar-noisy” if sub-traces have high similarity and have 

global peak-to-peak amplitude above certain threshold, but 

lower cluster energy; as “similar-low” if sub-traces are 

highly similar, but global peak-to-peak amplitude is below 

certain threshold. The remaining segments are labeled as 

“not similar”. 

    In the final stage of segmentation, segments classified as 

“similar-high” are labeled as A-segments, “similar-noisy” are 

labeled as A+F-segments, “not similar” are as F-segments, 

and “similar-low” are dropped (as these look like A-waves 

but are not due to low global peak-to-peak amplitude). Of all 

the A+F and F segments, the one with the largest normalized 

energy (energy normalized by segment length) is the final F-

segment. The rest of the F-segments are discarded, and A+F 

segments are relabeled as A-segments. As mentioned earlier, 

a dataset can have at the most only one F-segment and zero 

or more A-segments. Figure 3 depicts an example of outputs 

at different stages in segmentation. 

D. Performance Evaluation 

 For F-wave analysis, the clinical parameter of greatest 

interest is the F-wave latency, defined as the onset time for 

late-wave activity. Once the late-wave data are segmented 

and classified into different regions, F-wave segments are fed 

into the F-wave latency assignment algorithm to limit the 

latency search to segments. 

 For evaluating the performance of segmentation, F-wave 

latencies with and without the segmentation step were 

computed for each test and both were compared with the 

assignments by a board-certified neurologist. The 

comparison was done using the mean F-wave latency 

calculated as the arithmetic mean of the individual F-wave 

latencies. Mean (µ) and standard deviation (σ) depicting the 

expert-algorithm bias and Pearson correlation coefficient (ρ) 

values are reported for the two comparisons. 
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III. RESULTS AND DISCUSSION 

 

Compared to our previous work [5], the algorithm 

presented here resulted in reduction in parameter space by 

70%, increase in speed by 70 %, and reduction in code space 

by 80%. 

Figure 4 shows an example depicting the output of latency 

assignment algorithm, with and without segments. Without 

segments, the latency assignments are highly susceptible to 

fasciculations and other artifacts, resulting in several outlier 

latencies. With segmentation, the estimated latencies are 

much more intuitive and follow a trend which is consistent 

with how a human expert would analyze the data.  A 

description of the latency algorithm is outside the scope of 

this paper.  However, as depicted in Table 1, latency results 

were significantly better (p<0.05) after segmentation by 

comparison to manual assignments by a neurologist. 

 

 
Fig. 3 Example of outputs at different stages in segmentation. Top: 

ensemble of preprocessed data; middle: activity measure; bottom: output 

labeled segments. The red line in the middle panel indicates the threshold 

used to find “consistent” activity regions. 

IV. CONCLUSION 

 A new and improved approach to segmenting and 

classifying regions of late-wave activity has been described 

in this paper.  The algorithm finds portions of consistent 

activity, followed by clustering and classification of the 

regions into A-waves and F-waves. The performance of F-

wave latency assignment can be drastically improved by 

providing as input only the data corresponding to F-wave 

segments, thereby limiting the latency search to F-wave 

segments. The segmentation approach presented here is 

general enough to be applied to any data consisting of 

ensemble of traces with consistent activity and similar and/or 

dissimilar features. 

 
Fig 4. Effect of segmentation on latency assignments. The left panel shows 

the latencies („+‟)  without any segments; the right panel depicts enhanced 

performance when latencies were constrained to be within segments. 

 

 Expert Vs No Segment Expert Vs Segmented 

Lower Extremity   

    µ±σ 1.71±5.16 0.48±2.27 

    ρ 0.73 [0.65 0.80] 0.94 [0.92 0.96] 

Upper Extremity   

   µ±σ 1.68±1.29 1.37±0.72 

   ρ 0.92 [0.89 0.94] 0.98 [0.97 0.98] 

 

Table 1. Bias (µ±σ) and Pearson correlation coefficient (ρ) values along 

with confidence interval comparing expert assignments with algorithm 

assignments without and with segmentation. The results with segmentation 

were significantly better at 95% confidence level. 
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