
  

  

Abstract— The analysis of isometric force may provide early 
detection of certain types of neuropathology such as 
Parkinson’s disease. Our long term goal is to determine if there 
are detectable differences between model parameters of 
healthy verses unhealthy individuals. As a first step toward our 
long-term goal, we studied 24 healthy young adults ages 18 
through 24 years, both male and female. The experiments 
involved the participants exerting isometric force over a range 
from 5% to 65% of maximal voluntary contraction. The 
analysis involved the steady-state portion of the recorded time 
series. Each times-series was decomposed into a set of Intrinsic 
Mode Functions using Empirical Mode Decomposition. Next, 
eight features were extracted and used to train a Fuzzy Set 
Classifier.  The participants in this study were assigned to two 
categories: (1) high strength; and (2) low strength based upon 
the values of the eight extracted features. Even though the 
participants were all healthy and young, the features exhibited 
enough differences to successfully classify 99% of the 
participants. This finding suggests that, when clinical data 
become available, the features extracted from the Intrinsic 
Mode Functions and input into the Fuzzy Set Classifier may be 
capable of discriminating between healthy individuals and 
those who are in an early stage of neurodegenerative disease. 

I. INTRODUCTION 
This study is part of on-going work involving the modeling 
of isometric force exerted by the index finger. All of the 
subjects were young healthy adults, and the datasets are a 
reference point for future comparisons across age and across 
a range of neuropathologies. The steady-state portions of the 
datasets were analyzed using Empirical Mode 
Decomposition (EMD) into a set of Intrinsic Mode 
Functions (IMF). Eight features were extracted from the 
IMF and used as input into the Fuzzy Set Classifier (FSC). 

In our previous work we have shown that the steady-state 
isometric force signal was non-linear and nonstationary [1]-
[3]. By employing EMD, we also showed that the signal was 
corrupted by multiplicative noise [4]. 

To date, our modeling results agree with previous studies 
that identified two resonant peaks present in the power 
spectral density (PSD) of isometric force recordings. 
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Physiological tremor can explain both of the resonant peaks 
that appear in sub-regions of the PSD. Use of EMD to 
analyze the isometric force signal has shown that there are 
more than two resonant frequencies that need to be 
considered when classifying a participant’s force response. 
Deviations from the normal resonant frequencies may 
indicate pathological tremor, which in turn can provide for 
earlier diagnosis of neurological disorders such as 
Parkinson’s tremor [5]. Our ultimate goal is to develop a 
diagnostic tool that can be applied in a physician’s office for 
early detection and thereby more effective treatment.   

The two well-known resonant peaks are characteristic of 
normal physiological tremor. The first, thought to originate 
from a number of central and peripheral mechanisms, 
consistently falls within the range of 8-12 Hz, is termed 
neuronal tremor, and is resistant to change [6]. The 
mechanical tremor is the second component of physiological 
tremor and is associated with the resonant properties of the 
joint segment [6]. Prior findings using isometric force 
experiments have been conducted on both healthy subjects 
and those afflicted with Parkinson’s disease and suggest it is 
possible to discriminate between the two states [7].  

 Once the steady-state region of an isometric force 
response has been analyzed, the resulting features can be 
automatically classified using some form of pattern 
recognition algorithm. Fuzzy Set Theory (FST) is a 
generalized nonlinear approximator [8], [9], [10] and has 
been used to implement nonlinear dynamical systems [2], 
feed-back control systems [8]-[11], and as a pattern 
recognition method [12].  

 This paper describes the use of FST to implement an 
eight-feature classifier. Prior to extracting the eight features, 
an EMD algorithm was applied to the steady-state region of 
each participant’s isometric force response decomposing the 
time series into a set of IMFs [13], [14]. This process was 
repeated for all five trials of the seven target force levels 
studied here. The number of IMFs comprising a given set 
depended upon the complexity of the force response. Next, a 
set of eight features was extracted from each of the first six 
IMFs that were generated by the EMD algorithm. This 
procedure resulted in six sets of features that were input into 
six independent FSCs. In theory, the six FSCs could process 
the eight IMF in parallel. Once the outputs of the six FSCs 
were calculated, they were combined to generate a single 
classification of the participant’s force response into one of 
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the two categories: (1) high strength; and (2) low strength.  
  

II. METHODS 
The isometric force responses were acquired using the 

technique displayed in figure 1. 
 

 
 

Fig. 1 – Schematic representation of the technique used to capture 
a participant’s isometric force response. The horizontal 
lines drawn through the wrist and fingers imply that these 
areas were secured to the test platform to prevent 
accidental movements. The index figure applies an 
abductive force to a force detector (black circular object) in 
the direction shown by the arrow in the figure. 
 
Twenty four healthy adults, half male and half female, 

ages 18 through 24 years participated as subjects after 
providing informed consent.  The task was to produce a 
constant level of isometric flexion force using the index 
finger so that the force output on a computer screen matched 
the target force levels,  i.e., 5, 15, 25, 35, 45, 55, and 65% 
maximal voluntary contraction (MVC). Data on the task-
related normal forces and on tangential force were collected 
with a 3-dimensional load cell. The trial length was 15 s.  
The target force levels were presented to each participant in 
random order, and each subject completed five repetitions at 
each force level. At the beginning of each trial, no force was 
applied to the transducer. Next, the target force was 
displayed on a computer monitor and the participant 
responded by applying force to match the displayed target. 
The steady-state region of each trial consisted of the ten s. 
interval from 4 to 14 s. We excluded the first 4 seconds to 
avoid the dynamics of step-function transient response and 
the last second to minimize effects of fatigue. The sample 
rate for data collection was 100 Hz (i.e., T = 0.01 s). A 
second factor in the design involved dividing the 
participants into one of two categories based on the MVC, 
used as a measure of strength.  

Figure 2 shows the plots of the steady-state isometric 
force and the corresponding six IMFs. The red plot is a time 
series showing the steady-region of a single participant’s 
isometric force response. The six graphs located at the 
bottom of Fig. 2 are the first six IMFs following EMD 
analysis of the isometric force response. 

Following the EMD step, a set of eight features are 
extract from each of the IMFs. The six sets of eight features 

were input into the appropriate six FSCs, one for each of the 
six IMFs. The extracted features and the use of FSCs allows 
for a clear interpretation by the perspective user of the 
system (e.g., physicians and kinesiology researchers). 

 

 
 

Fig. 2 – Plots of isometric force response (red) and the first six 
corresponding IMFs (green). The isometric force response 
was generated by participant number 1 in response to a 
target level of 25% MVC (MVC = 28.6 [N]). 
 

The Table 1 contains a list of the eight features that 
were used as inputs to a given FSC. These eight features 
were selected to maintain consistency with classifiers used 
with other data sets that are part of our ongoing research, 
with the goal of discriminating between healthy participants 
and those exhibiting early stage neurodegenerative 
conditions. The other data sets have different categories than 
discussed in this paper. With the other data sets, all eight 
features were required in order to provide >95% correct 
classification. For example, in one of the data sets, the 
number of IMFs was dependent upon category. 

 
Table 1: List of the initial eight features extracted from each IMF.  

Feature Name: Description: 
Magnitude Amplitude of sinusoid 

approximation 
Frequency Frequency of sinusoid 
PhaseAngle Initial phase angle of sinusoid 
NumberOfIMFs Number of IMFs after EMD 
VectorNorm_IMFs Vector norm of the IMF 
IMF_std The standard deviation of the 

IMF 
VectorNorm_AM Vector norm of the amplitude 

modulation of the IMF 
SteadyStateError The error between the trend of 

the IMF and the target force. 
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The participants were divided into 2 categories based upon 
the MVC that they were capable of generating. Figure 3 is a 
plot of the individual MVC and also indicates the gender of 
the participants. Two categories, low and high strength, 
were formed by placing half of the subjects into each 
category.  Following the initial assignment into a strength-
category, the features sets were divided into two subsets. 
The first subset was used as the training set for the FSCs and 
the second formed the test set. 
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Fig. 3 - The plot of maximum voluntary contraction of the 24 
participants. The MVC was used to divide the participants into 
low-strength (MVC below the green threshold line) and high-
strength categories. The red dots indicate female participants 
and the blue x’s denote male participants. 

 
The MVC and corresponding target force levels differed 

across subjects. To standardize the responses across 
individuals we used an integer index corresponding to 
increasing target force level. This index was termed the 
condition index and is used as the independent variable in 
the following discussion. 

 All components of the feature extraction and FSC 
implementation were programmed in Matlab, and the FSC 
was implemented using the Matlab Fuzzy Logic Toolbox 
[15]. The distributions of the MFs were optimized using the 
ANFIS function of the Matlab Fuzzy Set Toolbox. 

Fig. 4 is a schematic representation of one of the six 
Sugeno-type FSCs used in the implementation. All six FSCs 
have the same configuration as shown in Fig. 4, however, 
the membership functions (MF) differed depending upon the 
IMF and the corresponding feature of the training sets. For a 
given IMF, each of the eight discrete-valued force-response 
features were transformed into degrees of membership in 
each of the seven MFs associated with the specific feature. 
The inputs were then mapped by a set of rules, referred to as 
the Fuzzy Associative Memory (FAM), to estimate the 
output category. 

 Prior to the training step, the seven Gaussian MFs were 
uniformly distributed across the domain of possible feature 
levels.  Fig. 5 is a plot of the seven MFs related with the 
Magnitude feature of the second IMF after training the FSC. 

 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 
Fig. 5. – Plots of the seven Magnitude MFs following optimization. 

 
 
 

Magnitude

Frequency

PhaseAngle

NumberOfIMFs

VectorNorm_IMF

IMF_std

VectorNorm_AM

SteadyStateError

FAM Rule 1

FAM Rule 2

FAM RuleN

Output:

Strength-Group

Category

Aggregation of

FAM Rules

 
 
Fig. 4. - The schematic representation of the FSC associated with the second IMF. The eight red boxes on the left-hand side of the 
figure represent the MFs for the eight features that are input to the system. The green boxes represent the FST rules (FAM) 
associating input and output. The blue box on the right symbolizes the aggregation of the FAM rules and the yellow box denotes 
the process of assigning a discrete value to the aggregation of the rules which serves as the assignment of the strength-group 
category. 
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Each of the 8 features where converted to degrees of 
membership in all 7 of the corresponding MFs. The 
following is an example of one of the FAM rules: 
 

If (Magnitude is High) and (Frequency is High) and 
(PhaseAngle is High) and (numberOfIMFs is High) and 
(vectorNorm_IMF is High) and (IMF_std is High) and 
(vectorNorm_AM is High) and (SteadyStateError is High) then 
(Strength Category is High)  

   
Each of the rules that comprise the FAM received input 

from multiple antecedents. Each rule then calculated an 
intermediate class assignment in parallel. Once the results of 
all of the If-Then rules comprising the FAM were generated, 
all of the intermediate class assignments were aggregated to 
form the consequent. The consequent is defuzzified to 
estimate a singleton which is the FSCs assignment of a 
strength-group category. 
 When all six FSCs concluded estimation of the category 
of their input sets, the union of these six singleton outputs 
was used to assign the force response time series to either 
the high-strength or low-strength category.   

III. RESULTS 

  The strength study data set was divided into two 
subsets, each containing roughly equal numbers of low and 
high strength participants. The first half of the data set was 
used to generate and optimize the FSC. The second subset 
was used to validate the FSC performance.  
 Using the eight features previously described, the FSC 
correctly classified 99% of the test set. In addition to using 
the full eight feature set, the size of the feature space was 
reduced first by calculating all combinations of the eight 
features taken seven at a time. There were eight 
combinations of the seven-feature classifiers and all eight 
classified at least 90% correct, with four of the combinations 
correctly classifying 98%. Continuing to reduce the 
dimension of the feature space, the 28 combinations of the 
eight features taken six at time were tested. Of the 28 
combinations only 2 combinations misclassified more than 
10% of the test sets feature. 
 Continuing the process of reducing the dimension of the 
feature space, we were able to determine the five features, 
listed in Table 2 that resulted in consistently good 
classification.  
Table 2: List of five best IMF features for the current data set. 

Feature Name: Description: 
Magnitude Amplitude of sinusoid 

approximation 
vectorNorm_IMFs Vector norm of the IMF 
IMF_std The standard deviation of 

the IMF 
vectorNorm_AM Vector norm of the 

amplitude modulation of 
the IMF 

steadyStateError The error between the 
trend of the IMF and the 
target force. 

IV. DISCUSSION 
 

Even though all of the subjects were healthy young 
adults, the extracted features of the IMFs resulting from 
EMD of the isometric force responses were successful in 
classifying 99% of the participants into the correct 
category (i.e., high-strength or low-strength).  

This finding suggested that the feature sets are robust 
and would be able to classify healthy individuals versus 
those with early stage neurological disorders.  This is 
corroborated by the initial findings using this FSC 
paradigm on a dataset which included participants from 
three age groups and ranging from healthy young adults 
to older participants who showed signs of natural neural 
degeneration. 
 Our future work will involve applying the FSC to other 
datasets which include variation across age groups and 
health status.  
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