
Hierarchical Domain Adaptation for SEMG Signal Classification across

Multiple Subjects

Rita Chattopadhyay#, Narayanan C Krishnan+ and Sethuraman Panchanathan#

#Center for Cognitive Ubiquitous Computing,

School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, Arizona, 85287, USA.

+ Center for Advanced Studies in Adaptive Systems,

School of Electrical Engineering and Computer Science,

Washington State University, Pullman, Washington, 99163, USA.

Abstract— Large variations in Surface Electromyogram
(SEMG) signal across different subjects make the process of au-
tomated signal classification as a generalized tool, challenging.
In this paper, we propose a domain adaptation methodology
that addresses this challenge. In particular we propose a
hierarchical sample selection methodology, that selects samples
from multiple training subjects, based on their similarity with
the target subject at different levels of granularity. We have
validated our framework on SEMG data collected from 8
people during a fatiguing exercise. Comprehensive experiments
conducted in the paper demonstrate that the proposed method
improves the subject independent classification accuracy by
21% to 23% over the cases without domain adaptation methods
and by 14% to 20% over the existing state-of-the-art domain
adaptation methods.

I. INTRODUCTION

Daily life activities such as typing on the keyboard,

dusting, brooming, ironing or work in assembly lines, involve

repetitive movements of different parts of the body. It has

been proved that repetitive tasks make work particularly

hazardous as it is the primary cause of muscle fatigue [1].

According to the US Bureau of Labor Statistics, in 2002,

there were more than 345,000 on the job back injuries, due

to fatigue, which required time off from work. The annual

direct cost of occupational injuries due to slip and fall, caused

due to muscle fatigue ,is expected to exceed $43.8 billion by

the year 2020 in the US (Bureau of Labor Statistics, 2004).

These accidents and the consequential loss in work hours

and life, besides the high medical cost, can be avoided if one

can intervene at an early stage by intelligent devices having

the capability for monitoring and detecting different stages

of fatigue. Technologies for detecting muscle fatigue at an

early stage can also be used to remove the cause of fatigue

by altering the environmental ergonomics where possible [2].

Researchers have observed that certain aspects of Sur-

face Electromyogram (SEMG) signals such as shift in the

power spectral density, root mean square (rms), instantaneous

frequency, median-frequency change as muscles become

fatigued. Changes in the SEMG power spectrum and their

shifts vary significantly across subjects. These wide and

unpredictable variations make the task of modeling and

classification of SEMG signals challenging.

Figure 1 shows the distribution of SEMG data over four

stages of a fatiguing activity for three different subjects. The

data distribution shown in Figure 1 is a two dimensional

projection obtained through factor analysis on the twelve

dimensional feature vectors derived from raw SEMG signals.

The four stages of fatigue with varying intensity of activity,

corresponding to four classes, shown in the figure, are (l)

low intensity of activity and low fatigue, (2) high intensity of

activity and moderate fatigue, (3) low intensity of activity and

moderate fatigue and (4) high intensity of activity and high

fatigue. We observe that the data distribution during each

stage or class varies from subject to subject. This variation

leads to both marginal and conditional probability differences

across subjects.

In this paper we present a successful case study of

application of domain adaptation techniques for detecting

different stages of fatigue in the SEMG signal of a test

subject using the available knowledge from multiple subject

data. for detecting different stages of fatigue on a test or

target subject. The proposed methodology can also be used

to develop a generalized classification framework for other

physiological signals such as ECG, EEG, respiratory rate and

pulse rate besides applications related to emotion and speech

analysis which have significant subject based variabilities.

II. RELATED WORK

Most of the past work on fatigue analysis has been

subject specific. Currently there are no reliable and roboust

indicators of fatigue across subjects [3], consequently most

of the work has focussed on feature analysis at individual

subject level. There has been some effort on developing

classification framework [4], [5] for detecting fatigue, but

these frameworks were mostly confined to distinguishing

non-fatigue and fatigue state SEMG signals. Classifying

intermediate stages of fatigue is still an under explored

research area.

Domain adaptation methodologies have been commonly

used to address distribution differences in multiple research

areas such as Text classification, Video Concept Detection,
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(a) Subject 1 (b) Subject 2 (c) Subject 4

Fig. 1. Three sample subjects (subjects 1, 2, 4) with four classes (four physiological stages) in our SEMG data set: Differences in marginal and conditional
probability distribution across subjects.

Sentiment Analysis, WiFi Localization [6], [7], [8], [9]. In

this paper we propose a novel application of domain adap-

tation methodology i.e. subject based variability in SEMG

signal.

Most of the existing domain adaptation methodologies

are focused on reducing marginal probability differences

between two data distributions [10], [11], [12], [13]. Huang

et al [12] re-weight the samples in source domain so as

to minimize the marginal probability difference, referred as

Kernel Mean Matching (KMM), while Pan et al [13] suggests

feature mapping for reducing the marginal probability differ-

ences between the source and target distribution referred as

Transfer Component Analysis (TCA).

However there has been little effort in addressing con-

ditional probability distribution differences. Gao et al [14]

reduces the conditional probability difference by comparing

the clusters of the target domain with respect to source

domain data ( Locally Weighted Ensemble (LWE)). Zhong

et al [15] proposed a two stage approach, feature mapping

followed by instance selection, for addressing marginal and

conditional probability differences (KMapEnsemble (KE)).

We have previously presented an abstract of a multi source

domain adaptation methodology [16], based on learning a

target classifier using labels generated by an unsupervised

scheme.

We compare the proposed methodology with four different

domain adaptation techniques: KMM and TCA that address

marginal probability differences; LWE, that addresses only

conditional probability differences and KE which addresses

both marginal and conditional probability differences, be-

sides comparing with other baseline methods.

III. PROPOSED FRAMEWORK

A. Problem Formulation

Assume that there are K subjects in the source domain

with M classes. The k-th subject in the source domain is

characterized by a sample set Dk = (xk
i ,y

k
i )|

Nk
i=1, where xk

i is

the feature vector, yk
i is the corresponding label, and Nk is the

total number of samples for the subject k. The target domain

consists of a few labeled data DT
l = (xT

i ,y
T
i )|

Nl
i=1 and plenty

of unlabeled data DT
u = xT

i |
Nu
i=1 where Nl and Nu are numbers

of labeled and unlabeled target domain samples respectively,

DT = DT
l

⋃

DT
u , and NT = Nl +Nu. The goal is to develop a

target classifier f T that can predict the labels of the unlabeled

data in the target domain, using the multi-source domain data

and a few labeled target domain data.

One simple approach is to learn a classifier on data

from multiple subjects available in the source domain. This

method has a drawback as the classifier is learned to mini-

mize loss on source domain data and not on target domain.

Another approach is to measure the distribution difference

between each subject data in source domain with the target

subject data and combine the hypothesis generated by each

subject based on the measure. The challenge in this approach

is to select the right measure. In addition, we observe

from Figure 1 that in SEMG signal different classes vary

differently over subjects. For example, subjects 1 and 2 have

similar data distribution for classes 1 and 3, and subjects

2 and 4 have similar data distribution for classes 4. Hence

computing a single similarity measure for a source domain

subject data with respect to target data does not capture

the differences at the class level. The proposed approach

presented below addresses all these challenges by following

a hierarchical confidence weighted sample selection strategy

that considers similarities at all levels.

B. Hierarchical Confidence Weighted Sample Selection

In the proposed approach we measure the similarities

between the source domain subject data and the target subject

data at three different levels, each with increasing granularity.

We call this framework Hierarchical Confidence Weighted

Multi Source Domain Adaptation (HC-MDA) which is out-

lined in Algorithm 1.

As a first step to the proposed approach we learn a model

MTl from the labeled target subject data DT
l . We compute

the classification accuracy obtained on each subject data

{Dk}K
k=1, by this model. This classification accuracy given

by wk is used to estimate the similarity of a particular source

domain subject k with respect to the target subject. The clas-

sification accuracy reflects the differences in both marginal

and conditional probability distributions. The classification

accuracies are normalised across subjects to obtain a relative
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similarity measure between a source domain and a target

domain subject. While this measure encapsulates the overall

similarity of a source domain subject k with respect to target

subject, it does not address the distribution difference or

similarities at individual class level.

The next level involves computing similarity between the

individual classes of source domain subject and the target

subject. This similarity measure is computed by determining

the average true positive rate, wk
c, for a class c belonging to

a source domain subject k. Normalised wk
c, classwise across

subjects, reflects conditional probability differences between

source and target subject classes.

However this measure still overlooks the dissimilarities

between the instances of source subject with respect to target

subject data e.g. even if a particular class has a true positive

rate as high as 80%, there are still 20% of the instances which

are not similar to the target domain distribution. In order to

avoid selecting these instances for domain adaptation, the

proposed framework advocates computation of similarity at

a still finer level of granularity. This selection is achieved

by concentrating only on the correctly classified instances

of a class and selecting instances with higher confidence of

prediction, D
K,C
sel . A classifier is learned these and labeled

target samples DT
l and the learned model is used to classify

and label the unlabeled target domain data DT
u .

Algorithm 1 The Hierarchical Confidence Weighted-Multi-

Domain Adaptation

1: Input Source domain subject samples {Dk}K
k=1 and small amount of target

domain subject training examples DT
l

2: Output D
K,C
sel

3: Learn a model MTl using DT
l

4: for k = 1, . . . ,K do

5: Weight for source Dk : wk = Classification accuracy for Dk using MT l

6: for c = 1 . . . , C do

7: Weight for class c of source Dk : wk
c = True positive rate for class c on

the samples from Dk using MT l

8: end for

9: end for

10: Normalise the wk and wk
c for each c, over all K subjects

11: Compute the number of samples Nk
c to be selected from a source subject k for

a class c

Nk
c = (wk

c ×wk)×|
{

xi : MTl (xi) = yiandyi = c
}

| (1)

12: D
k,c
sel = first Nk

c samples ∈
{

xi : MTl (xi) = yiandyi = c
}

with the highest confi-
dence of classification using MTl

13: Output D
K,C
sel

IV. EXPERIMENTS

A. Data Collection and Feature Extraction

The SEMG data was collected during a repetitive gripping

action performed by the forearm. Figure 2 shows the subject

with surface EMG differential electrodes on the extensor

carpi radialis muscle to record the SEMG signal. The subject

performs a cycle of flexion-extension of forearm as shown

in Figure 2 at two different speeds, i.e., low speed (1

cycles/sec) and high speed (2 cycles/sec) repetitively for

about 4 minutes. The cycles of low and high speed are

alternated after every minute to form four phases (or classes)

as described in Section I

Fig. 2. SEMG data collection during a repetitive gripping activity

The raw SEMG activity was recorded by Grass Model 8-

16C at 1000Hz and passed through a band pass filter of 20Hz

to 500Hz. The data was collected and saved by the LabView

software (from National Instruments) running on a PC. Data

was collected from 8 subjects including male and female of

the age group of 25 years to 45 years.

A set of twelve amplitude and frequency domain features

including mean frequency, median frequency, spectral en-

ergy, spectral entropy, root mean square, number of zero

crossings, to mention a few are derived from running win-

dows of 1000 time samples with 50% overlap.

B. Experimental Procedure

Effectiveness of the proposed method is evaluated against

the baseline methods SVM-C and SVM-T and against state-

of-the-art domain adaptation methods namely Kernel Mean

Matching (KMM), Transfer Component Analysis (TCA),

Kernel Ensemble (KE) and Locally Weighted Ensemble

(LWE). The description of these domain adaptation methods

is presented in Section II. SVM-C refers to all but one

method where the training data comprises of data from seven

subjects and the trained model is tested on unseen test subject

and SVM-T refers to a classifier learnt only on the labeled

samples from the test subject. Results are obtained from a

leave one subject out cross validation process. We randomly

select a set of 4 labeled samples from the target subject to

constitute DT
l . These labeled test data is added to all the

methods for fair comparison. The classification accuracies

are averaged over ten folds of execution to remove any bias

due to selection of any specific labeled data set from test

subject.

Model parameters for different techniques were obtained

through a cross validation process on a set aside validation

data set. SVM-C was trained with Gaussian Kernel with

σ = 0.5 and high C. For KMM, Gaussian Kernel with σ = 10

gave the best results on validation set. For KMM, weighted

SVM, part of LibSVM package, was used to learn a model

with weights associated with every data sample. TCA was

implemented with linear kernel and feature mapping was

obtained with dimension value of 10. As suggested by Zhong

et al, ‘bisectKmeans’ was used for clustering, in KE and in

LWE ‘Kmeans’ was used for clustering the test data.

V. RESULTS AND DISCUSSION

Average cross validated accuracy for each of the methods

is summarized in Table I. The first column of the table

indicates the test subject and the training data consists of

the data from the remaining seven subjects. We observe that

the proposed method significantly improves the performance

over other methods by an average gain of 15% to 20%.
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TABLE I

COMPARATIVE PERFORMANCE OF DIFFERENT METHODS ON SEMG DATA - ACCURACY (%)

Test Sub SVM-C SVM-T TCA KE KMM LWE HC-MDA
1 72.76 62.12 55.45 65.45 72.42 67.44 82.61
2 53.69 67.50 59.94 60.98 63.63 77.54 80.06
3 55.11 62.58 72.57 63.16 68.69 75.55 81.45
4 59.65 64.42 69.89 59.68 72.38 81.22 87.05
5 60.37 71.87 64.06 61.33 62.5 52.48 87.97
6 59.21 49.09 59.02 54.54 70.62 65.77 78.86
7 57.13 51.09 62.42 60.17 61.13 60.32 80.43
8 64.85 70.79 62.48 83.41 74.79 68.55 85.73

Average 60.34 62.43 63.22 64.41 68.27 69.14 83.02

LWE, that addresses conditional probability distribution dif-

ference, performs better than other methods that address only

marginal probability differences. However LWE, performs

poorer than HC-MDA since it computes the weights of

each subject depending upon a overall similarity factor,

overlooking the similarities at different levels.
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Figure 3 presents the variation in classification accuracies

for different methods with varying number of labeled data

available from the target subject. The performance of HC-

MDA is moderate when the nukmber of labeled samples

from target subjects is either 1 or 2. This is bacause the

small number of samples is insufficient to learn the target

model MT
l . However beyond 2 labeled samples from target

subject, HCMDA performs better than other techniques.

Performace of TCA is low because of conditional probability

differences in the data, that negatively affects the feature

mapping process of TCA [17]. Even though KE too involves

a feature mapping step, the sample selection strategy helps

it to perform better than TCA.

SVM-T performs very poorly upto 4 samples per class.

After 6 samples per class, SVM-T performs better than most

of the approaches as the number of labeled samples from

target subject is sufficient to learn a reliable model.

VI. CONCLUSIONS AND FUTURE WORKS

We consider the characterization of muscle fatigue through

noninvasive sensing mechanism such as surface electromyo-

graphy . The variation in Surface Electromyogram (SEMG)

signal parameters from subject to subject creates differences

in the data distribution making traditional data mining algo-

rithms ineffective. In this paper, we propose a hierarchical

confidence weighted domain adaptation methodology for

detecting different stages of fatigue for multiple subjects.

We have validated our framework on real-world SEMG data

collected from eight different subjects during a fatiguing

exercise. Our comprehensive experiments demonstrate the

effectiveness of the proposed framework and suggest that it is

possible to develop a generalized framework for SEMG data.

We plan to extend the proposed framework to applications

involving other types of physiological signals for emotion

and health monitoring in everyday life, industrial work and

geriatric care.
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