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Abstract— Parkinson’s disease (PD) automatic identification
has been actively pursued over several works in the litera-
ture. In this paper, we deal with this problem by applying
evolutionary-based techniques in order to find the subset of
features that maximize the accuracy of the Optimum-Path
Forest (OPF) classifier. The reason for the choice of this
classifier relies on its fast training phase, given that each
possible solution to be optimized is guided by the OPF accuracy.
We also show results that improved other ones recently obtained
in the context of PD automatic identification.

I. INTRODUCTION

Parkinson’s disease (PD) automatic identification has been

extensively studied in the last years, and much effort has

been dedicated to find the features that really matter to this

task. Navı́o et al. [1] presented a collection of feature selec-

tion algorithms to deal with PD recognition, and Little [2]

developed a remarkable study about PD identification and

also introduced a new feature to improve the effectiveness

of such systems. Revett et al. [3] introduced the Rough sets

theory for feature selection in the context of PD automatic

recognition. Finally, Guo et al. [4] have introduced a learn-

ing function composed by a Gaussian Mixture Model and

Genetic Programming in order to accomplish this task.

A particular attention has been devoted to evolutionary-

based algorithms for feature selection, since to find a subset

of features that maximizes the accuracy of a classifier can

be seen as an optimization procedure. In this paper, we

improved the results presented by Spadotto et al. [5], which

introduced the Optimum-Path Forest (OPF) [6] classifier in

the context of PD automatic identification, by applying three

recent algorithms for feature selection based on evolutionary

intelligence: Particle Swarm Optimization (PSO) [7], Har-

mony Search (HS) [8] and Gravitational Search Algorithm

- GSA [9]. Our results are comparable to the ones obtained

by Little et al. [2], and the optimal subset of features can be

calculated in less than 1 second using the Oxford Parkinson’s

Disease Detection Dataset [2].
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The remainder of this paper is organized as follows.

Sections II and III describe, respectively, the evolutionary-

based feature selection theory, the dataset and methodologies

used in this work. Section IV address the experiments.

Finally, Section V states conclusions.

II. EVOLUTIONARY-BASED FEATURE SELECTION

This section reviews the evolutionary-based techniques for

feature selection used in this work: PSO, HS and GSA.

A. Particle Swarm Optimization

Basically, the Particle Swarm Optimization - PSO is a

technique modeled on swarm intelligence that finds a solu-

tion in a search space based on the social behavior dynam-

ics [7]. Each possible solution of the problem is modeled as a

particle in the swarm that imitates its neighborhood based on

a fitness function. In this context, each particle has a memory

that stores its best local solution (local maxima) and the best

global solution (global maxima).

The entire swarm is modeled in a multidimensional space

ℜm, in which each particle pi = (xi, vi) ∈ ℜ
m, i =

1, 2, . . . , n, has two main features: (i) position (xi) and (ii)

velocity (vi). The local (best current position x̂i) and global

solution ŝ are also known. After defining the swarm size,

i.e., the number of particles, each one of them is initialized

with random values of both velocity and position. Each

individual is then evaluated with respect to some fitness

function and its local maximum is updated. At the end, the

global maximum is updated with the particle that achieved

the best position into the swarm. This process is repeated

until some convergence criterion is reached. The updated

position and velocity equations of the particle pi in the

simplest form that govern the PSO are, respectively, given

by

vi = wvi + c1r1(x̂i − xi) + c2r2(ŝ− xi) (1)

and

xi = xi + vi, (2)

where w is the inertia weight that controls the interaction

power between particles, and r1, r2 ∈ [0, 1] are random

variables that give the idea of stochasticity to the PSO

method. Constants c1 and c2 are used to guide particles into

good directions.

Recently, Ramos et al. [10] presented a hybrid algorithm

for feature selection based on PSO and OPF (PSO-OPF), in
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which the main idea was to use the accuracy of OPF over

an evaluating set as the fitness value for PSO. Given that

the Optimum-Path Forest classifier has been demonstrated

to be accurate and very fast for training patterns [6], the

combination of PSO and OPF can provide a fast and robust

solution for feature selection, specially in large datasets. The

PSO-OPF algorithm uses the accuracy of OPF to guide PSO

to find a suitable solution. Basically, for each particle, the

OPF classifier is trained with the correspondent subset of

features in a training set, and its accuracy is assessed over

an evaluating set. More details can be found in [10].

B. Harmony Search

The Harmony Search (HS) is an evolutionary algorithm

inspired in the music, considering the improvisation process

of music players [8]. The main idea is to use the same process

adopted by musicians to create new songs to obtain a near-

optimal solution of some optimization process. Basically,

any possible solution is modeled as a harmony and each

parameter to be optimized can be seen as a musical note. The

best harmony (solution) is chosen as the one that maximizes

some optimization criteria. The algorithm is composed by

few steps, as described in the next sections.

1) The Optimization Problem and Algorithm Parameters:

In order to describe how HS works, an optimization problem

is specified in Step 1 as follows:

Minimize f(x) subject to xi, ∀i = 1, 2, . . . , n, (3)

where f(x) is the objective function, xi ∈ X means the

harmony i and n is the size of X , i.e., the set of all

harmonies.

The HS algorithm parameters required to solve the op-

timization problem (Equation 3) are also specified in this

step: the harmony memory size (HMS), harmony memory

considering rate (HMCR), pitch adjusting rate (PAR), and

stopping criteria. HMCR and PAR are parameters used to

improve the solution vector, i.e., they can help the algorithm

to find globally and locally improved solutions in the har-

mony search process (Step 3). Recall that in this paper we

set n = HMCR.

2) Harmony Memory (HM): Now, let us define xj
i as

the j-th value of harmony i. In Step 2, the HM matrix

(Equation 4) is initialized with randomly generated solution

vectors with their respective values of the objective function:

HM =




x1

1
x2

1
. . . xm

1
f(x1)

x1

2
x2

2
. . . xm

2
f(x2)

...
...

...
...

...

x1

n x2

n . . . xm
n f(xn)


 . (4)

3) Generating a New Harmony From HM: In Step 3, a

new harmony vector x
′

i is generated from the HM based on

memory considerations, pitch adjustments, and randomiza-

tion (music improvisation). It is also possible to choose the

new value using the HMCR parameter, which varies between

0 and 1 as follows:

x′
i ←

{
x′
i ∈

{
x1

i , x
2

i , . . . , x
m
i

}
with probability HCMR,

x′
i /∈ Xi with probability (1-HCMR).

(5)

The HMCR is the probability of choosing one value from

the historic values stored in the HM, and (1- HMCR) is

the probability of randomly choosing one feasible value not

limited to those stored in the HM.

Further, every component of the new harmony vector x
′

i is

examined to determine whether it should be pitch-adjusted:

Pitching adjusting decision for x′
i ←

{
Yes with probability PAR,

No with probability (1-PAR).
(6)

The pitch adjustment of each instrument is often used to

improve the solutions and to escape from local optima. This

mechanism concerns with shifting the neighboring values

of some decision variable in the harmony. If the pitch

adjustment decision for the decision variable x′
1

is Yes, x′
1

is replaced as follows:

x′
i ← x′

i + rb, (7)

where b is an arbitrary distance bandwidth for the continuous

design variable, and r is a uniform distribution between 0 and

1.

4) Update HM: In Step 4, if the new harmony vector

is better than the worst harmony in the HM, the latter is

replaced by this new harmony.

5) Stopping Criteria: In Step 5, the HS algorithm finishes

when it satisfies the stopping criteria. Otherwise, Steps 3 and

4 are repeated in order to improvise a new harmony again.

The HS algorithm is an interesting approach for sev-

eral applications, mainly because of its simplicity and low

computational cost. Ramos et al. [11] proposed a Harmony

Search-based feature selection algorithm, in which the idea is

the same as PSO-OPF, i.e., to use the OPF accuracy over an

evaluation set as the fitness function. This approach is called

HS-OPF. Basically, for each harmony, an OPF classifier is

trained with the correspondent subset of features in a training

set, and its accuracy is assessed over an evaluating set. Thus,

for each iteration of the HS algorithm, the harmonies that

compose the HM are tunned, in order to provide the best

accuracy over the evaluating set.

C. Gravitational Search Algorithm

Gravity is one of the four fundamental interactions of

nature, along with the strong force, electromagnetism and

the weak force. The idea that rules gravity concerns with the

fact that an object with mass attracts one another. One of

the most accepted theory is the Newton’s law of universal

gravitation, which says that “every massive particle in the

universe attracts other massive one with a force that is

directly proportional to the product of their masses and

inversely proportional to the square of the distance between

them”:

F = G
M1M2

R2
, (8)
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in which M1 and M2 are the masses of particles 1 and

2, respectively, R2 is the distance between them, G is

a gravitational constant and F is the magnitude of the

gravitational force.

The “gravitational constant” G is time dependent, and

decreases with the age of universe:

G(t) = G(t0)
t0
t

β

, β < 1, (9)

in which G(t) is the value of gravitational constant at time t,
and G(t0) is the value of the gravitational constant at the time

of the ”creation of the universe” that is being considered.

Newton’s second law says that when a force F is applied

to a mass, its acceleration a only depends on the force and

its mass M :

a =
F

M
. (10)

Based on above definitions, Rashedi et al. [9] proposed the

Gravitational Search Algorithm (GSA), which can be defined

as follows. Let X = {x1, x2, . . . , xn} be an universe with

n masses, such that xi ∈ ℜ
m. One can define, at a specific

time t, the force acting on mass i from mass j in the dth

dimension as following:

F d
ij(t) = G(t)

Mi(t)Mj(t)

Rij(t) + ǫ
(xd

j (t)− xd
i (t)), (11)

where Rij(t) is the Euclidean distance between masses i and

j, and ǫ is a small constant.

In order to give a stochastic behavior to GSA, Rashedi

et al. [9] assume the total force that acts on agent i in

a dimension d as a randomly weighted sum of the forces

exerted from other agents:

F d
i (t) =

n∑

j=1,j 6=i

γjF
d
ij(t), (12)

in which γj denotes a randomly generated number between

0 and 1. The acceleration of mass i at time t and dimension

d is given by:

adi (t) =
F d
i (t)

Mi(t)
, (13)

in which the mass Mi is calculated as follows:

Mi(t) =
qi(t)∑n

j=1
qj(t)

, (14)

with

qi(t) =
fi(t)− w(t)

b(t)− w(t)
. (15)

The terms w(t) and b(t) mean, respectively, the masses with

worst and best fitness value. The term fi(t) denotes the

fitness value of mass i.
Finally, to avoid local optimal solutions, only the best k

masses, i.e., the ones with highest fitness values, will attract

others. Let K be the set of these masses. The value of k
is set to k0 at the beginning of the algorithm and decreases

with time. Hence, Equation 12 is rewritten as:

F d
i (t) =

∑

j∈K,j 6=i

γjF
d
ij(t). (16)

The velocity and position updating equations are given by:

vdi (t+ 1) = γjv
d
i (t) + adi (t) and (17)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1). (18)

However, one can see that Equation 18 can not be applied

in our case, since we are working in a multidimensional

binary space. Therefore, Rashedi et al. [12] proposed the

Binary GSA, which has the same formulation introduced

above, but with a different equation for updating the position

of each mass:

xd
i (t+ 1) =

{
1− xd

i (t) if γi < S(vdi (t+ 1))
xd
i (t) otherwise,

(19)

such that

S(vdi (t)) =
∣∣tanh(vdi (t))

∣∣ . (20)

In order to achieve a good convergence rate, Rashedi et

al. [12] proposed to limit the velocity to
∣∣vdi

∣∣ < vmax =
6. According to them, this value was obtained over some

experiments, and seemed to be appropriated in our case.

The GSA-based algorithm for feature selection works on

a similar manner as the previous ones: the main idea is to

use the OPF accuracy over an evaluating set as the fitness

function to guide GSA onto searching the best solutions.

This approach, called, GSA-OPF, was recently introduced

by Papa et al. [13].

III. MATERIALS AND METHODS

In this work, we have employed the Oxford Parkin-

son’s Disease Detection Dataset [2], which is composed by

biomedical voice measurements from 31 people, 23 with

Parkinson’s disease. Regarding features, 22 were extracted,

as follows:

• MDVP:Fo - Average vocal fundamental frequency;

• MDVP:Fhi - Maximum vocal fundamental frequency;

• MDVP:Flo - Minimum vocal fundamental frequency ;

• MDVP:Jitter (%), MDVP:Jitter (Abs), MDVP:RAP,

MDVP:PPQ, Jitter:DDP - Several measures of variation

in fundamental frequency;

• MDVP:Shimmer, MDVP:Shimmer (dB),

Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ,

Shimmer:DDA - Several measures of variation in

amplitude;

• NHR, HNR - Two measures of ratio of noise to tonal

components in the voice ;

• RPDE, D2 - Two nonlinear dynamical complexity mea-

sures;

• DFA - Signal fractal scaling exponent and

• Spread1, Spread2, PPE - Three nonlinear measures of

fundamental frequency variation.

The dataset is composed by 193 samples, and there are

around six recordings per patient. In this work, we compared
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the effectiveness of OPF over the original dataset, i.e.,

without feature selection, with PSO-OPF, HS-OPF and GSA-

OPF. The experiments have been executed 10 times with

randomly generated training, evaluating and test sets. The

percentages are: 30% for training, 20% to the evaluating set

and the remaining 50% for testing. These percentage values

were empirically chosen, based on our previous experience.

In regard to parameters, for all techniques we used 10

iterations for convergence and 300 initial solutions, i.e.,

particles for PSO, harmonies for HS and masses for GSA.

With respect to PSO parameters, we used c1 = 1.4, c2 = 0.6
and w = 0.4, and for HS parameters we used HMCR =
0.67. Finally, for GSA parameters we used G0 = 1.4 and

ǫ = 0.6. Notice that these values were empirically chosen,

based on our previous experience.

IV. EXPERIMENTAL RESULTS

The PD automatic identification using OPF has been

addressed by Spadotto et al. [5]. In that case, the authors did

not apply any feature selection technique. Thus, we repeated

that experiments in order to compared their results against

the ones obtained here. Table I displays the results. Note that

we have used the evaluating set only for PSO-OPF, HS-OPF

and GSA-OPF.

TABLE I

MEAN ACCURACY AND MEAN EXECUTION TIME TO SELECT THE MOST

REPRESENTATIVE FEATURES IN SECONDS FOR PSO-OPF, HS-OPF AND

GSA-OPF.

Technique Accuracy Feature selection #features
execution time [s]

OPF 71.16±5.44 - 22

PSO-OPF 73.53±8.18 1.54 14

HS-OPF 84.01±3.54 0.16 10

GSA-OPF 84.01±3.54 1.68 8

One can see that all feature selection techniques im-

proved the results obtained by OPF over the origi-

nal dataset. The most impressive results were obtained

through HS-OPF and GSA-OPF techniques, in which the

former selected the 10 out of 22 features: MDVP:Fo,

MDVP:Jitter (%), MDVP:RAP, Jitter:DDP, MDVP:Shimmer

(dB), MDVP:APQ, Shimmer:DDA, HNR, Spread2 and PPE

(Section III). Recall that this information was obtained by

randomly picking the output from one running. The HS-OPF

technique was 10.5 times faster than GSA-OPF, which make

it the best choice for the problem. The computational com-

plexity of GSA is dominated by a sorting step in order to find

the set of k masses that most influence positively the fitness

value of a given one, as described by Equation 16. In our

algorithm, this step was implemented with Quicksort [14].

Our results are not better than the ones reported by Revett

et al. [3], since our accuracy measure [6] differs from them.

If we have applied the same mathematical formulation as

in [3], our recognition accuracy with HS-OPF would be

around 92.78% with the above selected features, but still

below of 100% obtained by them. However, we did not hear

anything about their approach efficiency, since the number

of rules generated by their proposed method may be a little

bit prohibitive. In addition, some of the selected features by

HS-OPF are identical to the ones obtained by Little et al. [2].

V. CONCLUSIONS

In this paper we deal with the problem of feature selection

in the context of Parkinson’s disease automatic identification

using evolutionary-based techniques, in which the function

to be maximized has been the one given by the OPF accuracy

over an evaluating set.

The experiments have showed that all techniques improved

the results over the traditional dataset, i.e., without feature

selection. HS-OPF and GSA-OPF have achieved the best

results, with HS-OPF selecting 10 out of 22 features and

being the fastest approach. For future works, we intend

to use meta-optimization techniques in order to select the

parameters for PSO-OPF, HS-OPF and GSA-OPF.
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Herrera, and C. Irı́bar, “Feature selection algorithms applied to
parkinson’s disease,” in Proceedings of the Second International

Symposium on Medical Data Analysis, London, UK, 2001, ISMDA
’01, pp. 195–200, Springer-Verlag.

[2] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O.
Ramig, “Suitability of dysphonia measurements for telemonitoring of
parkinson’s disease,” IEEE Transactions on Biomedical Engineering,
vol. 56, no. 4, pp. 1015–1022, 2009.

[3] K. Revett, F. Gorunescu, and A.-B. M. Salem, “Feature selection in
parkinson’s disease: A rough sets approach,” in Proceedings of the

International Multiconference on Computer Science and Information

Technology, Mragowo, Poland, 2009, pp. 425–428.
[4] P.-F. Guo, P. Bhattacharya, and N. Kharma, “Advances in detecting

parkinsons disease,” Medical Biometrics, vol. 6165/2010, pp. 306–
314, 2010.

[5] A. A. Spadotto, J. P. Papa R. C. Guido, and A. X. Falcão, ,” in 2010

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, Buenos Aires, Argentina, 2010, pp. 6087–6090.
[6] J. P. Papa, A. X. Falcão, and Celso T. N. Suzuki, “Supervised pattern

classification based on optimum-path forest,” International Journal of

Imaging Systems and Technology, vol. 19, no. 2, pp. 120–131, 2009.
[7] J. Kennedy and R.C. Eberhart, Swarm Intelligence, M. Kaufman,

2001.
[8] Z. W. Geem, Music-Inspired Harmony Search Algorithm: Theory and

Applications, Springer Publishing Company, Incorporated, 1st edition,
2009.

[9] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi, “Gsa:
A gravitational search algorithm,” Information Sciences, vol. 179, no.
13, pp. 2232–2248, 2009.

[10] C. C. O Ramos, J. P. Papa, A. N. Souza, and A. X. Falcão, “What
is the importance of selecting features for non-technical losses iden-
tification?,” in Proceedings of the IEEE International Symposium on

Circuits and Systems, Rio de Janeiro, Brazil, 2011, (accepted for
publication).

[11] C. C. O Ramos, A. N. Souza, and J. P. Papa, “New insights on non-
technical losses characterization through evolutionary-based feature
selection,” in IEEE Transactions on Power Delivery, 2011, submitted.

[12] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi, “Bgsa:
binary gravitational search algorithm,” Natural Computing, vol. 9, pp.
727–745, 2010.

[13] J. P. Papa, A. F. Pagnin, S. A. Schellini, A. A. Spadotto, R. C. Guido,
M. P. Ponti Jr., G. Chiachia, and A. X. Falcão, “Feature selection
through gravitational search algorithm,” in Proceedings of the 36th

International Conference on Acoustics, Speech and Signal Processing,
Prague, Czech Republic, 2011, (accepted for publication).

[14] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1,
pp. 10–15, 1962.

7860


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

