
  

 

Abstract—Brain Computer Interface (BCI) systems control 

the user’s environment via his/her brain signals. Brain signals 

related to motor imagery (MI) have become a widespread 

method employed by the BCI community. Despite the large 

number of references describing the MI signal treatment, there 

is not enough information related to the available 

programming languages that could be suitable to develop a 

specific-purpose MI-based BCI. The present paper describes 

the development of an offline-analysis system based on MI-

EEG signals via open-source programming languages, and the 

assessment of the system using electrical activity recorded from 

three subjects. The analyzer recognized at least 63% of the MI 

signals corresponding to three classes. The results of the offline 

analysis showed a promising performance considering that the 

subjects have never undergone MI trainings.   

I. INTRODUCTION 

Brain Computer Interface (BCI) is a system which 

attempts to connect a user with his/her environment 

and devices in it. The human-machine interaction of BCIs is 

accomplished by means of brain signals following one of 

two broad schemes: to evoke voluntary mental states (e.g., 

sensory-motor rhythms and slow cortical potentials), or to 

elicit a specific response in the user‟s brain via stimulation 

(e.g., P300 and visual evoked potentials) [1]. In particular, 

sensory-motor rhythms are electroencephalographic (EEG) 

oscillations occurring in α (8–12 Hz) and β (12–30 Hz) 

bands over the primary sensory-motor area of the cortex. 

These waves are enhanced by awake-restful states, attention-

related demands (e.g., attentive expectation of relevant 

stimulus omission, working memory activation, and episodic 

short-term memory task), and cognitive-mnemonic 

processes [2], whereas, they are blocked or attenuated in 

episodes of: sensory processing, actual motor performance, 

motor imagery (MI) performance or visualization of 

movements [3]–[4]. The waves not only change according to 

the type of movement, but they are also differently 

modulated by each limb, especially with regard to the 

location of the most relevant information over the cortex. 

Furthermore, Green et al. (1999) showed that the sensory-

motor rhythms are similarly modulated by amputees 

attempting to move the absent part of their body, and by 

healthy people performing imaginary movements [5]. 

Modulation of sensory-motor rhythms via MI has become 

a popular method in BCI research. Applying this method 

usually takes place in six phases. These are: 

1. Training session without performance feedback. 

Consecutive and random imaginary movements 

without providing performance measurement. 

2. Offline analysis. A Process that involves three main 

steps: (i) brain signal conditioning, (ii) MI-feature 

extraction, and (iii) parameter tuning of an adaptive 

model via samples of MI patterns (training dataset) in 

order to classify which movements is being executed 

(testing dataset).  

3. Optimization of the classifier. Search of the most 

suitable frequency bands, based on event-related (de-) 

synchronization (ERD/ERS) studies, and search of the 

most convenient electrode positions.  

4. Training session with feedback. Training session that 

makes use of the previously adapted system for 

providing performance measurement. 

5. Classifier update. Retraining of the current classifier 

via the most recent recorded brain signals. 

6. Application of the BCI system. Online analysis of the 

brain signals for translating the user‟s desires into 

control commands of a device of interest.  
Despite the large number of references describing the 

aforementioned method (e.g., [6]-[12]), there is not enough 

information related to the available programming languages 

that could be suitable to prototype a MI-based BCI system. 

Guger et al. [13] proposed an EEG-based BCI by using 

Matlab, Simulink, and Real-Time Workshop (MathWorks, 

Inc.). Programming languages supplied by MathWorks are 

high performance languages conducted for mathematical, 

engineering, and science areas. The foremost drawback of 

this software is the cost. Although it is feasibly afforded by 

business environments, it may become a financial burden for 

the private sector. For instance, worldwide universities often 

purchase a limited number of licenses to deal with the cost. 

However, they seldom satisfy the demand. MathWorks 

usually suggests paying for a low-cost student edition in 

restricted budget cases, which is not often eligible.  

On the other hand, there is an open source emulator of 

Matlab (Octave, [14]), unfortunately not all Matlab features 

and toolboxes work with Octave.  

With the above considerations in mind, the goals of the 

present study are: (1) to develop an offline-analysis system 

of MI signals via a proficient open-source programming 

language; and (2) to assess the system using MI signals 

recorded from three subjects. Python was considered the 

ideal tool for the study-proposes because it is multi-

platforms, it has clean syntax, it has a large number of 

standard libraries and modules, it has bindings to all 

standards graphical user interface (GUI) toolkits, and it 

engages additional modules for specific tasks such as digital 

signal processing (DSP), and machine learning (ML) [15]– 

[16].  
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II. DESIGN OF AN OFFLINE ANALYZER OF MI-EEG SIGNALS 

VIA PYTHON PROGRAMMING LANGUAGE 

The offline analysis software is entirely written in Python
1
, 

and it is essentially supported by Numpy
2
 and Scipy

3
 

(scientific-computing libraries) in addition to matplolib
3
 

(plotting library). The GUI of the offline analyzer is 

programmed on PyGTK
4
, and the ML process is carried out 

by means of the module LIBSVM
5
. The main functions of 

the software are hereunder summarized.  

A. Data Upload  

Data must be organized in three dimensions (channels, 

trials, and samples), and are uploaded as mat-file (binary 

form to store numerical arrays). No Matlab is needed.      

B. EEG Signal Characterization 

In order to process the electrical brain activity, and to 

identify a variety of brain states, the EEG signal must be 

analyzed according to its stochastic nature, and its response 

to visual/auditory stimuli or to mental tasks. 

Firstly, stochastic processes require probabilistic structures 

that could accurately characterize their behaviour. The well-

known central limit theorem is commonly used, assuming 

that an EEG signal is the addition of signals generated by 

independent neural oscillators. This assumption is reliable 

only if the EEG measurement interval has an adequate 

length. As a general rule, this EEG interval must not exceed 

one second length retaining its normal distribution, and thus 

satisfying the theorem conditions [17]. In order to 

adequately characterize the EEG data, the option 

„Segmentation‟ on the menu „Data Acquisition‟ (Fig. 1) 

fragments each signal according to the inserted time value. 

Secondly, depending on the type of stimuli or mental task 

and the cortical area of interest, a specific response can be 

distinguished from the EEG recordings. The sensory-motor 

cortex neurons begin to code the forthcoming imaginary 

movement about 100ms after the cue onset. The electrical 

response can be sensed from the scalp between 250ms and 

500ms after the target visualization [7]. Considering these 

facts, the offline analyzer has the alternative to select the 

time window of interest in each dataset. The option 

„Samples‟ on the menu „Data Acquisition’ allows to set the 

initial and the final sample of the time series of interest. 

Last but not least, classical methods of signal processing 

that accentuate significant features assume a time-invariant 

behaviour. However, this assumption is not suitable for long 

EEG recordings. The intrinsic properties of the EEG signal 

in study may be helpful to retrieve the normal spontaneous 

activity from the EEG [17]. In our case, the desired signal 

has slow time variant properties. Therefore, a method for 

stationary analysis can be repeatedly applied on consecutive 

and overlapping intervals of the signal. This overlapping 

requirement can be enabled via the option „Overlapping‟ on 

the menu „Feature Extractor and Classifier‟ (Fig. 2). 

 
1 http://www.python.org/ 
2 http://numpy.scipy.org/, http://www.scipy.org/ 
3 http://matplotlib.sourceforge.net/ 
4 http://www.pygtk.org/ 
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

C. Signal Conditioning 

EEG signal conditioning methods are used for eliminating 

the noise artefact effects, and to emphasize relevant signal 

features. For these reasons, specific tools that obtain more 

localized patterns (i.e., spatial filtering), and that determine 

the frequency content of the waveform (i.e., spectral 

filtering) are available in the menu „Signal Conditioning‟ 

(Fig. 2). The offline analyzer additionally plots the spectral 

behaviour of the conditioned EEG signals by using the 

option „Spectrogram‟ on the menu „2D Plots‟ (Fig. 4). 

Spatial filtering methods are especially important for the 

treatment of MI signals. The electrical activity picked up 

from the scalp is detected by very distant (up to a few cm) 

sensors. As a result, the potentials caused by the neurons of 

interest spread to surrounding electrodes due to the volume 

conduction effects (e.g., through brain tissue, cerebrospinal 

fluid, surrounding tissues, skull and scalp). Weak signals 

such as the sensory-motor rhythms are also affected by α 

rhythms related to the visual system. It is thus required that 

we use a high-pass spatial filter that emphasizes focal 

activity and that reduces more diffuse components, hence 

improving spatial resolution. Common Average and 

Laplacian Methods (available options on the menu „Signal 

Conditioning‟) are frequently used to emphasize focal 

activity, and to reduce more diffuse components. The former 

diminishes the contribution of components present in the 

entire electrode montage, whereas the latter decreases the 

effect of common components adjacent to the channel of 

interest [18]-[19].     

D. Feature Extraction via BP Estimates  

Some of the most common methods for extracting 

frequency specific EEG features are based on auto-

regressive models and signal power analysis. Particularly, 

band power (BP) estimates have played an important role 

into control MI-based BCIs. BP parameters improve the 

classification accuracy by selecting the appropriate electrode 

positions (options ‘+ Channels‟ and „- Channels‟ on the 

menu „Signal Conditioning‟), and by monitoring shift in α 

and β bands according to the user‟s intentions. Besides the θ 

and γ bands could also carry MI-related information [4], [7]. 

To take this into account, the software has the option to 

select the frequency bands and the corresponding 

bandwidths by the option „Band Power Estimates‟ on the 

menu „Feature Extractor and Classifier‟ (Fig. 3).  

E. Classification via SVMs 

A support vector machine (SVM) maps the input data to a 

higher dimensional space, where is more likely to identify 

different classes, via a kernel function. Considering x the 

training dataset and y the desired output, the kernel for this 

study is described by , which is 

known as radial basis function. The procedure to adapt a 

SVM is focused on four steps: (i) scaling of datasets within 

the [-1 1] range, (ii) searching for the C and γ parameters by 

means of cross-validation, (iii) SVM model creation via the 

training dataset, and the most suitable C and γ parameters, 

and (iv) assessment of the current model with the testing 

dataset. 
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Fig. 1. Data Acquisition Menu. This tab is utilized to upload EEG-data via 
the button LOAD, and to characterize the EEG signals via the text-entries. 

 
Fig. 2. Signal Conditioning Menu. This interface is useful to down-sample 

and to spatially/spectrally filter the EEG signals based on the layout above. 

 
Fig. 3. Feature Extractor and Classifier Menu. This menu is split in BP 

extractor and SVM classifier configuration.    

 
Fig. 4. 2D-Plots Menu. This interface displays four modes of plotting: 

spectro-temporal analysis (spectrogram), feature distribution according to 

frequency bands (boxplot and histogram), and ERD/ERS maps. 

III. EXPERIMENTAL PROCEDURE  

Three untrained subjects (S1, S2, and S3), one female and 

two males, ages 26-31 participated in a 50-minute session. 

They were right-handed students and did not report 

neurological abnormalities. The session was arranged in a 

30-minute phase for mounting 64 EEG channels, and a 20-

minute phase for MI training purposes. All procedures were 

approved by the University of Essex‟s Ethics Committee.   

A. Data Recording 

The acquisition of the EEG activity was done with a 

Biosemi (TM) ActiveTwo system along with ActiView 

computer software. EEG activity was recorded via 64 active 

electrodes, plus a Driven-Leg-Right electrode and a 

Common-Mode-Sense electrode (Fig. 2). The ActiveTwo 

system was configured to acquire signals within a 400Hz 

bandwidth; and it sends the data to a sampling at 2048Hz. 

The ActiView software was programmed to decimate to 

512Hz (configuration that limits the bandwidth to 104Hz), 

and to store the EEG recordings. The data are saved in BDF-

format (i.e., 24-bit version of the popular 16-bit EDF 

format). The BDF-files are translated to MAT-files by using 

an open-source library BioSig
6
, which provides a Python 

version of the BDF converter.   

B. Training Protocol programmed on PyGTK 

The training protocol is organized in four runs. Each run 

has 40 trials divided equally in two classes (left/right); that 

is, 80 trials per class per session. Each trial lasts between 10 

and 11 seconds, and it has six epochs: (i) warning sign 

(upright person) from 0s to 2s; (ii) cue (person pointing 

towards left/right) onset plus a beep from 2s to 3s; (iii) 

left/right hand imaginary motion from 3s to 7s; (iv) idle state 

extraction from 8s to 10s, which is useful to identify non MI 

data; and (v) random intertrial interval from 10s to 11s.  

C. Offline Analysis 

For illustration purposes, MI and idle patterns were 

assembled using channels C3, Cz, and C4 of the international 

10/10 system (Fig. 2) and processed offline as follows: 

Firstly, each trial for every mental state was fragmented into 

seven segments considering 1000ms-interval for left/right 

MI executions, 500ms-interval for idle state, and 50% 

overlapping. Secondly, each segmented waveform was 

down-sampled to 256 Hz and spatially filtered by small 

Laplacian or CAR methods. Thirdly, each EEG segment was 

filtered within αlower, αupper, βlower, and βupper bands, squared 

sample by sample, and averaged over time, giving a value 

later transferred to logarithmic scale. In summary, each 

feature set trial comprised three EEG channels; each channel 

was characterized by four frequency bands; and each band 

comprised seven intervals (i.e., 84 features per trial). Having 

assembled the patterns, 40 trials per class were taken for 

modelling the SVM classifier, and 40 trials per class were 

taken for assessing the classifier performance. The idle class 

contributed with 80 trials per phase (i.e., training/testing). 

 
6 http://biosig.sourceforge.net/index.html 
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IV. RESULTS 

The offline analyzer recognized at least 63% of the MI 

patterns corresponding to three classes of three subjects 

(Table 1). The results of the offline analyzer showed a 

promising performance considering that the subjects have 

never undergone MI trainings. Moreover, the results of the 

analysis selecting small Laplacian are slightly higher than 

the results of the analysis using CAR, which is congruent 

with the outcomes reported by H. Ramoser, J. Müller-

Gerking, and G. Pfurtscheller [19].     
TABLE 1 

CONFIGURATION AND ASSESSMENT OF THE OFFLINE ANALYZER 

System Configuration 

Frequency 

Bands [Hz] 
αlower:8-10,αupper:10-12,βlower:16-20,βupper:20-24 

Spatial 

Filtering 
Small Laplacian Common Average 

System Results 

S1 
Training 81.3% 71.9% 

Testing 78.1% 63.1% 

S2 
Training 77.5% 78.8% 

Testing 65.6% 65.0% 

S3 
Training 87.5% 83.1% 

Testing 76.1% 73.6% 

V. DISCUSSION 

The use of Python programming language along with ML 

plug-ins for developing MI training sessions, and offline 

analysis systems is relative straightforward. The proposed 

offline MI-based BCI system successfully discriminated up 

to 87.5% of MI-patterns of three untrained subjects, which is 

enough to control an online system. It is important to point 

out that the present results are limited to two system-

configurations; however, the parameters can be tuned in 

order to find out a more satisfactory human-machine 

adaptation. Furthermore, the offline analyzer has been 

implemented with some tools (such as ERD/ERS maps) to 

figure out the most suitable BCI parameters for the current 

user. Moreover, the Python community provides extensive 

variety of modules to design more complex systems. For 

example, it is strongly recommended to make use of 

Python(x,y)
7
 that is interactive scientific software 

embedding worthwhile sources; as well as, it could be 

helpful to harness ML libraries such as Elephant
8
 (multi-

purpose library for ML), Shogun
9
 (comprehensive ML 

toolbox), Orange
10

 (General-purpose data mining), PyML
11

 

(ML in Python), or MDP
12

 (modular data processing. 
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7 http://www.pythonxy.com/ 
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