

Abstract—Brain Computer Interface (BCI) systems control

the user’s environment via his/her brain signals. Brain signals

related to motor imagery (MI) have become a widespread

method employed by the BCI community. Despite the large

number of references describing the MI signal treatment, there

is not enough information related to the available

programming languages that could be suitable to develop a

specific-purpose MI-based BCI. The present paper describes

the development of an offline-analysis system based on MI-

EEG signals via open-source programming languages, and the

assessment of the system using electrical activity recorded from

three subjects. The analyzer recognized at least 63% of the MI

signals corresponding to three classes. The results of the offline

analysis showed a promising performance considering that the

subjects have never undergone MI trainings.

I. INTRODUCTION

Brain Computer Interface (BCI) is a system which

attempts to connect a user with his/her environment

and devices in it. The human-machine interaction of BCIs is

accomplished by means of brain signals following one of

two broad schemes: to evoke voluntary mental states (e.g.,

sensory-motor rhythms and slow cortical potentials), or to

elicit a specific response in the user‟s brain via stimulation

(e.g., P300 and visual evoked potentials) [1]. In particular,

sensory-motor rhythms are electroencephalographic (EEG)

oscillations occurring in α (8–12 Hz) and β (12–30 Hz)

bands over the primary sensory-motor area of the cortex.

These waves are enhanced by awake-restful states, attention-

related demands (e.g., attentive expectation of relevant

stimulus omission, working memory activation, and episodic

short-term memory task), and cognitive-mnemonic

processes [2], whereas, they are blocked or attenuated in

episodes of: sensory processing, actual motor performance,

motor imagery (MI) performance or visualization of

movements [3]–[4]. The waves not only change according to

the type of movement, but they are also differently

modulated by each limb, especially with regard to the

location of the most relevant information over the cortex.

Furthermore, Green et al. (1999) showed that the sensory-

motor rhythms are similarly modulated by amputees

attempting to move the absent part of their body, and by

healthy people performing imaginary movements [5].

Modulation of sensory-motor rhythms via MI has become

a popular method in BCI research. Applying this method

usually takes place in six phases. These are:

1. Training session without performance feedback.

Consecutive and random imaginary movements

without providing performance measurement.

2. Offline analysis. A Process that involves three main

steps: (i) brain signal conditioning, (ii) MI-feature

extraction, and (iii) parameter tuning of an adaptive

model via samples of MI patterns (training dataset) in

order to classify which movements is being executed

(testing dataset).

3. Optimization of the classifier. Search of the most

suitable frequency bands, based on event-related (de-)

synchronization (ERD/ERS) studies, and search of the

most convenient electrode positions.

4. Training session with feedback. Training session that

makes use of the previously adapted system for

providing performance measurement.

5. Classifier update. Retraining of the current classifier

via the most recent recorded brain signals.

6. Application of the BCI system. Online analysis of the

brain signals for translating the user‟s desires into

control commands of a device of interest.
Despite the large number of references describing the

aforementioned method (e.g., [6]-[12]), there is not enough

information related to the available programming languages

that could be suitable to prototype a MI-based BCI system.

Guger et al. [13] proposed an EEG-based BCI by using

Matlab, Simulink, and Real-Time Workshop (MathWorks,

Inc.). Programming languages supplied by MathWorks are

high performance languages conducted for mathematical,

engineering, and science areas. The foremost drawback of

this software is the cost. Although it is feasibly afforded by

business environments, it may become a financial burden for

the private sector. For instance, worldwide universities often

purchase a limited number of licenses to deal with the cost.

However, they seldom satisfy the demand. MathWorks

usually suggests paying for a low-cost student edition in

restricted budget cases, which is not often eligible.

On the other hand, there is an open source emulator of

Matlab (Octave, [14]), unfortunately not all Matlab features

and toolboxes work with Octave.

With the above considerations in mind, the goals of the

present study are: (1) to develop an offline-analysis system

of MI signals via a proficient open-source programming

language; and (2) to assess the system using MI signals

recorded from three subjects. Python was considered the

ideal tool for the study-proposes because it is multi-

platforms, it has clean syntax, it has a large number of

standard libraries and modules, it has bindings to all

standards graphical user interface (GUI) toolkits, and it

engages additional modules for specific tasks such as digital

signal processing (DSP), and machine learning (ML) [15]–

[16].

Programming an Offline-Analyzer of Motor Imagery Signals via

Python Language

Luz María Alonso-Valerdi
a
, Francisco Sepulveda

a

a
School of Computer Science and Electronic Engineering, University of Essex, Colchester–Essex, UK

A

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 7861

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

II. DESIGN OF AN OFFLINE ANALYZER OF MI-EEG SIGNALS

VIA PYTHON PROGRAMMING LANGUAGE

The offline analysis software is entirely written in Python
1
,

and it is essentially supported by Numpy
2
 and Scipy

3

(scientific-computing libraries) in addition to matplolib
3

(plotting library). The GUI of the offline analyzer is

programmed on PyGTK
4
, and the ML process is carried out

by means of the module LIBSVM
5
. The main functions of

the software are hereunder summarized.

A. Data Upload

Data must be organized in three dimensions (channels,

trials, and samples), and are uploaded as mat-file (binary

form to store numerical arrays). No Matlab is needed.

B. EEG Signal Characterization

In order to process the electrical brain activity, and to

identify a variety of brain states, the EEG signal must be

analyzed according to its stochastic nature, and its response

to visual/auditory stimuli or to mental tasks.

Firstly, stochastic processes require probabilistic structures

that could accurately characterize their behaviour. The well-

known central limit theorem is commonly used, assuming

that an EEG signal is the addition of signals generated by

independent neural oscillators. This assumption is reliable

only if the EEG measurement interval has an adequate

length. As a general rule, this EEG interval must not exceed

one second length retaining its normal distribution, and thus

satisfying the theorem conditions [17]. In order to

adequately characterize the EEG data, the option

„Segmentation‟ on the menu „Data Acquisition‟ (Fig. 1)

fragments each signal according to the inserted time value.

Secondly, depending on the type of stimuli or mental task

and the cortical area of interest, a specific response can be

distinguished from the EEG recordings. The sensory-motor

cortex neurons begin to code the forthcoming imaginary

movement about 100ms after the cue onset. The electrical

response can be sensed from the scalp between 250ms and

500ms after the target visualization [7]. Considering these

facts, the offline analyzer has the alternative to select the

time window of interest in each dataset. The option

„Samples‟ on the menu „Data Acquisition’ allows to set the

initial and the final sample of the time series of interest.

Last but not least, classical methods of signal processing

that accentuate significant features assume a time-invariant

behaviour. However, this assumption is not suitable for long

EEG recordings. The intrinsic properties of the EEG signal

in study may be helpful to retrieve the normal spontaneous

activity from the EEG [17]. In our case, the desired signal

has slow time variant properties. Therefore, a method for

stationary analysis can be repeatedly applied on consecutive

and overlapping intervals of the signal. This overlapping

requirement can be enabled via the option „Overlapping‟ on

the menu „Feature Extractor and Classifier‟ (Fig. 2).

1 http://www.python.org/
2 http://numpy.scipy.org/, http://www.scipy.org/
3 http://matplotlib.sourceforge.net/
4 http://www.pygtk.org/
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

C. Signal Conditioning

EEG signal conditioning methods are used for eliminating

the noise artefact effects, and to emphasize relevant signal

features. For these reasons, specific tools that obtain more

localized patterns (i.e., spatial filtering), and that determine

the frequency content of the waveform (i.e., spectral

filtering) are available in the menu „Signal Conditioning‟

(Fig. 2). The offline analyzer additionally plots the spectral

behaviour of the conditioned EEG signals by using the

option „Spectrogram‟ on the menu „2D Plots‟ (Fig. 4).

Spatial filtering methods are especially important for the

treatment of MI signals. The electrical activity picked up

from the scalp is detected by very distant (up to a few cm)

sensors. As a result, the potentials caused by the neurons of

interest spread to surrounding electrodes due to the volume

conduction effects (e.g., through brain tissue, cerebrospinal

fluid, surrounding tissues, skull and scalp). Weak signals

such as the sensory-motor rhythms are also affected by α

rhythms related to the visual system. It is thus required that

we use a high-pass spatial filter that emphasizes focal

activity and that reduces more diffuse components, hence

improving spatial resolution. Common Average and

Laplacian Methods (available options on the menu „Signal

Conditioning‟) are frequently used to emphasize focal

activity, and to reduce more diffuse components. The former

diminishes the contribution of components present in the

entire electrode montage, whereas the latter decreases the

effect of common components adjacent to the channel of

interest [18]-[19].

D. Feature Extraction via BP Estimates

Some of the most common methods for extracting

frequency specific EEG features are based on auto-

regressive models and signal power analysis. Particularly,

band power (BP) estimates have played an important role

into control MI-based BCIs. BP parameters improve the

classification accuracy by selecting the appropriate electrode

positions (options ‘+ Channels‟ and „- Channels‟ on the

menu „Signal Conditioning‟), and by monitoring shift in α

and β bands according to the user‟s intentions. Besides the θ

and γ bands could also carry MI-related information [4], [7].

To take this into account, the software has the option to

select the frequency bands and the corresponding

bandwidths by the option „Band Power Estimates‟ on the

menu „Feature Extractor and Classifier‟ (Fig. 3).

E. Classification via SVMs

A support vector machine (SVM) maps the input data to a

higher dimensional space, where is more likely to identify

different classes, via a kernel function. Considering x the

training dataset and y the desired output, the kernel for this

study is described by , which is

known as radial basis function. The procedure to adapt a

SVM is focused on four steps: (i) scaling of datasets within

the [-1 1] range, (ii) searching for the C and γ parameters by

means of cross-validation, (iii) SVM model creation via the

training dataset, and the most suitable C and γ parameters,

and (iv) assessment of the current model with the testing

dataset.

7862

Fig. 1. Data Acquisition Menu. This tab is utilized to upload EEG-data via
the button LOAD, and to characterize the EEG signals via the text-entries.

Fig. 2. Signal Conditioning Menu. This interface is useful to down-sample

and to spatially/spectrally filter the EEG signals based on the layout above.

Fig. 3. Feature Extractor and Classifier Menu. This menu is split in BP

extractor and SVM classifier configuration.

Fig. 4. 2D-Plots Menu. This interface displays four modes of plotting:

spectro-temporal analysis (spectrogram), feature distribution according to

frequency bands (boxplot and histogram), and ERD/ERS maps.

III. EXPERIMENTAL PROCEDURE

Three untrained subjects (S1, S2, and S3), one female and

two males, ages 26-31 participated in a 50-minute session.

They were right-handed students and did not report

neurological abnormalities. The session was arranged in a

30-minute phase for mounting 64 EEG channels, and a 20-

minute phase for MI training purposes. All procedures were

approved by the University of Essex‟s Ethics Committee.

A. Data Recording

The acquisition of the EEG activity was done with a

Biosemi (TM) ActiveTwo system along with ActiView

computer software. EEG activity was recorded via 64 active

electrodes, plus a Driven-Leg-Right electrode and a

Common-Mode-Sense electrode (Fig. 2). The ActiveTwo

system was configured to acquire signals within a 400Hz

bandwidth; and it sends the data to a sampling at 2048Hz.

The ActiView software was programmed to decimate to

512Hz (configuration that limits the bandwidth to 104Hz),

and to store the EEG recordings. The data are saved in BDF-

format (i.e., 24-bit version of the popular 16-bit EDF

format). The BDF-files are translated to MAT-files by using

an open-source library BioSig
6
, which provides a Python

version of the BDF converter.

B. Training Protocol programmed on PyGTK

The training protocol is organized in four runs. Each run

has 40 trials divided equally in two classes (left/right); that

is, 80 trials per class per session. Each trial lasts between 10

and 11 seconds, and it has six epochs: (i) warning sign

(upright person) from 0s to 2s; (ii) cue (person pointing

towards left/right) onset plus a beep from 2s to 3s; (iii)

left/right hand imaginary motion from 3s to 7s; (iv) idle state

extraction from 8s to 10s, which is useful to identify non MI

data; and (v) random intertrial interval from 10s to 11s.

C. Offline Analysis

For illustration purposes, MI and idle patterns were

assembled using channels C3, Cz, and C4 of the international

10/10 system (Fig. 2) and processed offline as follows:

Firstly, each trial for every mental state was fragmented into

seven segments considering 1000ms-interval for left/right

MI executions, 500ms-interval for idle state, and 50%

overlapping. Secondly, each segmented waveform was

down-sampled to 256 Hz and spatially filtered by small

Laplacian or CAR methods. Thirdly, each EEG segment was

filtered within αlower, αupper, βlower, and βupper bands, squared

sample by sample, and averaged over time, giving a value

later transferred to logarithmic scale. In summary, each

feature set trial comprised three EEG channels; each channel

was characterized by four frequency bands; and each band

comprised seven intervals (i.e., 84 features per trial). Having

assembled the patterns, 40 trials per class were taken for

modelling the SVM classifier, and 40 trials per class were

taken for assessing the classifier performance. The idle class

contributed with 80 trials per phase (i.e., training/testing).

6 http://biosig.sourceforge.net/index.html

7863

IV. RESULTS

The offline analyzer recognized at least 63% of the MI

patterns corresponding to three classes of three subjects

(Table 1). The results of the offline analyzer showed a

promising performance considering that the subjects have

never undergone MI trainings. Moreover, the results of the

analysis selecting small Laplacian are slightly higher than

the results of the analysis using CAR, which is congruent

with the outcomes reported by H. Ramoser, J. Müller-

Gerking, and G. Pfurtscheller [19].
TABLE 1

CONFIGURATION AND ASSESSMENT OF THE OFFLINE ANALYZER

System Configuration

Frequency

Bands [Hz]
αlower:8-10,αupper:10-12,βlower:16-20,βupper:20-24

Spatial

Filtering
Small Laplacian Common Average

System Results

S1
Training 81.3% 71.9%

Testing 78.1% 63.1%

S2
Training 77.5% 78.8%

Testing 65.6% 65.0%

S3
Training 87.5% 83.1%

Testing 76.1% 73.6%

V. DISCUSSION

The use of Python programming language along with ML

plug-ins for developing MI training sessions, and offline

analysis systems is relative straightforward. The proposed

offline MI-based BCI system successfully discriminated up

to 87.5% of MI-patterns of three untrained subjects, which is

enough to control an online system. It is important to point

out that the present results are limited to two system-

configurations; however, the parameters can be tuned in

order to find out a more satisfactory human-machine

adaptation. Furthermore, the offline analyzer has been

implemented with some tools (such as ERD/ERS maps) to

figure out the most suitable BCI parameters for the current

user. Moreover, the Python community provides extensive

variety of modules to design more complex systems. For

example, it is strongly recommended to make use of

Python(x,y)
7
 that is interactive scientific software

embedding worthwhile sources; as well as, it could be

helpful to harness ML libraries such as Elephant
8
 (multi-

purpose library for ML), Shogun
9
 (comprehensive ML

toolbox), Orange
10

 (General-purpose data mining), PyML
11

(ML in Python), or MDP
12

 (modular data processing.

ACKNOWLEDGMENT

This project would not have been possible unless the

sponsor of the National Council of Science and Technology

of Mexico, which grants a scholarship for Alonso-Valerdi.

7 http://www.pythonxy.com/
8 http://elefant.developer.nicta.com.au
9 http://www.shogun-toolbox.org
10 http://www.ailab.si/orange
11 http://pyml.sourceforge.net
12 http://mdp-toolkit.sourceforge.net

REFERENCES
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and

T.M. Vaughan, “Brain-computer interfaces for communication and

control”, Clin. Neurophysiol., vol. 113, no. 6, Jun. 2002, pp. 767–791.

[2] J. A. Pineda, “The functional significance of mu-rhythms: translating
seeing, and hearing into doing”, Brain Res. Rev., vol. 50, 2005, pp.

57–68.

[3] C. Neuper, R. Scherer, S. Wiressnegger, and G. Pfurtscheller, “Motor
imagery and action observation: modulation of sensorimotor brain

rhythms during mental control of a brain-computer interface”, Clin.

Neurophysiol., vol. 120, no. 2, Feb. 2009, pp. 239–247.
[4] G. Pfurtscheller, and F. H. Lopes da Silva, “Event-related EEG/EMG

synchronization and desynchronization: basic principles”, Clin.

Neurophysiol., vol. 110, no. 11, Nov. 1999, pp. 1842–1857.
[5] R. Krepki, G. Curio, B. Blankertz, K. R. Müller, “Berlin brain

computer interface – The HCI communication channel for discovery”,

Int. J. Hum.-Comput. St., vol. 65, 2007, 460-477.
[6] R. Boostani, B. Graimann, M. H. Moradi, and G. Pfurtscheller, “A

comparison approach toward finding the best feature and classifier in
cue-based BCI”, Med. Biol. Eng. Comput., vol. 45, no. 4, Feb. 2007,

pp. 403–412.

[7] G. Pfurtscheller, and C. Neuper, “Motor imagery and direct brain-
computer communication”, P. IEEE, vol. 89, no.7, Jul. 2001,

pp.1123–1134.

[8] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A.
Schlögl, B. Obermaier, and M. Pregenzer, “Current trends in Graz

brain-computer interface (BCI) research”, IEEE T. Rehabil. Eng., vol.

8, no.2, Jun. 2000, pp. 216–219.
[9] G. Pfurtscheller, C. Neuper, G. R. Müller, B. Obermaier, G. Krausz,

A. Schlögl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M.

Wörtz, G. Supp, and C. Schrank, “Graz-BCI: state of the art and
clinical applications”, IEEE Trans. Neural Syst. Rehabil. Eng., vol.

11, no. 2, Jun. 2003, pp. 1–4.

[10] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer
interface research at the Wadsworth center”, IEEE T. Rehabil. Eng.,

vol. 8, no. 2, Jun. 2000, pp. 222–226.

[11] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H.

Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and

T. M. Vaughan, “Brain–computer interface technology: a review of

the first international meeting”, IEEE T. Rehabil. Eng., vol. 8, no. 2,
Jun. 2000, pp 164–173.

[12] A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, N. Birbaumer,

“Brain–computer communication: unlocking the locked in”, Psychol.
Bull., vol. 127, no. 3, May 2001, pp. 358-375.

[13] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G.

Pfurtscheller, “Rapid prototyping of an EEG-based brain computer
interface (BCI)”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 9, no.

2, Jun. 2003, pp. 1–4.

[14] http://www.gnu.org/software/octave/
[15] G. Lindstrom, “Programming with Python”, IEEE Computer Society,

Oct. 2005, pp. 10–16.

[16] T. E. Oliphant, “Python for scientific computing”, Computing in
Science and Engineering, University Brigham Young, pp. 10–20.

[17] L. Sörnmo, and P. Laguna, “Bioelectrical signal processing in cardiac

and neurological applications”, Elsevier Academic Press, 2005, pp.

55–90, 97– 103.

[18] D. J. McFarland, L. M. McCane, S. V. David and J. R. Wolpaw,

“Spatial filter selection for EEG-based communication”, Electroen.
Clin. Neuro., vol. 103, no. 3, Sep. 1997, pp. 386–394.

[19] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal Spatial

Filtering of Single Trial EEG During Imagined Hand Movement”,
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 8, no. 4, Dec. 2000, pp.

441–446.

[20] C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support
vector classification”, May 2009. Available:

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[21] G. Dornhege, J. R. Millán, T. Hinterberger, D. J. McFarland, and K.
R. Müller (eds.), “Toward brain-computer interfacing”, MIT Press,

2007, ch. 4 and 13–15.

[22] W. J. Chun, “Core Python programming”, 2nd ed., Prentice Hall Ed.,
2007, ch. 1–10.

[23] C. M. Bishop, “Pattern Recognition and Machine Learning”, Springer

Ed., 2006, ch. 1.

7864

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

