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Abstract— This paper proposes a system for activity recog-
nition using multi-sensor fusion. In this system, four sensors
are attached to the waist, chest, thigh, and side of the body.
In the study we present two solutions for factors that affect
the activity recognition accuracy: the calibration drift and
the sensor orientation changing. The datasets used to evaluate
this system were collected from 8 subjects who were asked to
perform 8 scripted normal activities of daily living (ADL), three
times each. The Naı̈ve Bayes classifier using multi-sensor fusion
is adopted and achieves 70.88%-97.66% recognition accuracies
for 1-4 sensors.

I. INTRODUCTION
Over the past decades, wearable technology has gained the

interest of researchers and clinicians [1]. There have been a
number of applications using wearable systems such as mon-
itoring patients with chronic disease and detecting emergency
situations for elderly persons [2]. In these applications ac-
tivity recognition is a requirement of the monitoring system.
Inertial sensors such as accelerometers and gyroscopes are
appropriate and widely used for activity recognition.

There has been a lot of work in human activity recognition
using a single sensor attached to different parts of the body.
Karantonis et al. [3] proposed an activity recognition system
using a single waist mounted accelerometer to discriminate
activities of daily living (ADL) with threshold-based tech-
niques. In many cases, there was a lot of noise sources
that affected the recognition accuracy in wearable systems,
such as motion artifacts and communication error. Therefore,
multi-sensor fusion is adopted to maximize the information
content and reduce both systematic and random error.

Sensor calibration and alignment are two major factors
affecting the performance of wearable systems [4]. The vast
majority of research in this area assumes well defined, fixed
sensor locations, and no calibration parameters drift occurs
in the experiment. In this paper, we propose two algorithms
which can be used to calibrate the signal dynamically and
eliminate the affect of a varying sensor orientation.

A number of research studies have proposed classifier
algorithms for activity recognition. Yang et al. implemented
a neural network classifier for off-line activity recognition
[5]. However, implementing such a complex algorithm in
wearable systems is a big challenge due to the computational
limitation of an embedded-system. The alternative Naı̈ve
Bayes classification is a simple probabilistic classifier, as-
suming strong independence of attributes, and it is suited for
the real-time and embedded classification of activity.
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This paper is organized as follows: In section II, the system
is presented. The algorithms for in-use calibration and the
elimination of sensor orientation changing are addressed.
The Naı̈ve Bayes classifier using multi-sensor fusion is
investigated. In section III, we analyze the datasets of ADL
collected from eight subjects,simultaneously recorded from
four sensors, and investigate the recognition accuracies.

II. METHODOLOGY

A. System Architecture

In this study, we adopted the Shimmer wireless sensor
platform [6] to collect the movement information. Shimmer
is a small sensor platform well suited for wearable appli-
cations, which includes a tri-axial accelerometer, a MSP430
microprocessor and a Bluetooth module. It is suitable for
the monitoring of human movement and establishing body
sensor networks. Four sensors were attached to each subject
at the chest, waist, thigh and side of the body. Data was
recorded from the sensor arrangement via Bluetooth. Fig. 1
shows the deployment of the system.

B. In-use Calibration

Generally, accelerometers must calibrated before use. In
this paper, we define this method as the predefined cal-
ibration. In the research, the calibration of the tri-axial
accelerometer was performed using the method proposed by
Ferraris et al. [7]. However, we assumed that the drift of each
axis was linear. Therefore, the complexity of the computation
for the calibration drift was obviously reduced.

C. Sensor Orientation

The activity recognition using accelerometers can be af-
fected by sensor orientation changing. One accelerometer
sensor can deliver different reports about a movement due
to the change of the orientation. A number of researches
assume that the sensors are well fixed at a certain position.

Fig. 1: The System Architecture.
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However, the problem still occurs due to the slight dif-
ference in sensor orientation when fixing the sensor at the
beginning of experiments. In Fig. 2, three subjects with
the sensors attached to the waist were asked to perform
the following activities: standing, sitting, lying and walking.
The signals of sensor attachment change distinctly between
different subjects due to the slight change of the orientation.

In this paper, an estimate of the constant gravity vector
is adopted to solve the above problem. In the static activity
such as standing, the gravity vector is steady. It can be used
to estimate the vertical component, and the magnitude of the
horizontal component is also obtained [8].

In Fig. 3, there are two relevant coordinate systems. One is
the body reference coordinate system relative to the gravity,
and the other is the device coordinate system based on the
sensor orientation. In the body reference coordinate system,
we define the initial gravity direction as the vertical compo-
nent (however, when the subject is lying, the initial gravity
direction changes to the horizontal direction.), and define
the initial horizontal direction as the horizontal component.
In this paper, we proposed an algorithm to transform the ac-
celerometer signals from the device coordinate system which
is sensitive to the orientation to the body reference coordinate
system which is steady. During testing, subjects were asked
to stand still for at least 1s, and then performed the required
activities. Therefore, the gravity vector represented using the
device coordinate system is given by (1),

vg = (vx, vy, vz); (1)

and the real-time acceleration is denoted as (2).

A = (ax, ay, az); (2)

Then, using the vector dot product, we can compute the
projection P of A upon the initial vertical axis Vg as
described by (3).

P = (
A · Vg

Vg · Vg
)Vg (3)

Fig. 2: The signals of different subjects performing the same
activity.

Fig. 3: The comparison of the body reference coordinate
system and the device coordinate system.

In other words, P is the vertical component of the ac-
celeration vector A. |P | is the magnitude of the vertical
component, and (4) can be used to indicated the direction of
the vertical component relative to the initial vertical direction.

cos(α) =
P · Vg

|P | × |Vg|
(4)

Next, since A is the sum of its vertical and horizontal
components, we can compute the horizontal component of
the acceleration signal by vector subtraction as denoted by
(5).

H = A− P (5)

However, as opposed to the vertical case, the orientation
of H relative to the global coordinate system is hard to
detect. Accordingly, we simply compute the magnitude of the
horizontal component of the real-time acceleration as |H|.
The signals transformed to the body reference coordinate
system from the above experiments are illustrated in Fig. 4.

In Fig. 4, the transformed signals which were col-
lected from different subjects performing the same activities
showed that the vertical and horizontal information is steady
despite the change of the sensor orientation.

Fig. 4: The signal using the body reference coordinate
system.
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D. Feature Selection

Before the raw data goes through the classifier, they
must be pre-processed using a windowing technique and
feature selection to increase the classification accuracy. In
this paper, a fixed and not overlapped window size approach
was adopted to segment the signals. The fixed window size
approach is easy to implement, and thus is ideally suited for
real-time applications in embedded system. The sampling
rate of the accelerometer is 200Hz, and the window size
is 0.5s, which means that there are 100 samples in each
window.

Raw data seperated into small windows are used to gen-
erate the features. Time-domain features were selected in
this research, which require less time consumption compared
with FFT or Wavelet analysis. The Mean and the Standard
Deviation are common time-domain features for activity
recognition. In this paper, the Mean is used to identify the
static activities, and the Standard Deviation is adopted to
identify the dynamic activities in combination with the Mean
feature.

E. Naı̈ve Bayes Classifier

Currently, most activity classifiers are designed for off-
line recognition. Techniques of spatiotemporal analysis such
as hidden markov models (HMM) used in [9] show good
classification rates for everyday activities. However, running
resource intensive algorithms on an embedded sensor system
is a challenging task. Therefore, Naı̈ve Bayes classification
is adopted as the classifier considering its high recognition
accuracy and ease of implementation.

The Naı̈ve Bayes classifier is a simple probabilistic clas-
sifier assuming strong independence within attributes of an
instance as (6).

argmaxcP (C = c|H1,H2, · · · ,Hn)

= argmaxc
1

Z
P (C)

n∏
i=1

P (Hi|C) (6)

Z is a scaling factor, which depends only on all the hy-
potheses, C is the classification set, and P (c) is called
the class prior probability. Assume acceleration data from
the sensors have a Gaussian distribution whose mean and
variance depend on class set. In the training stage, all the
related mean and variance are calculated and the model is
built. During testing, given a particular raw data, the activity
with maximum probability based on (6) is identified. The
process is shown in Fig. 5.

Fig. 5: The process of Naı̈ve Bayes classification.

Moreover, the Naı̈ve Bayes classifier is suitable for multi-
sensor fusion. Considering the assumption that all the hy-
potheses are independent with each other, multi-sensor fusion
can be represented by the multiplication of the probabilities
of each sensor. For instance, the probability of sitting using
four sensors is shown in (7).

P (Sitting|Schest, Swaist, Sside, Sthigh) =

P (Sitting)× P (chest|Sitting)
P (Schest, Swaist, Sside, Sthigh)

×P (waist|Sitting)× P (side|Sitting)
P (Schest, Swaist, Sside, Sthigh)

× P (thigh|Sitting)
P (Schest, Swaist, Sside, Sthigh)

(7)

III. EXPERIMENT

A. Data Collection

In this research, eight subjects ranged in age from 70 to 83
(76.50±4.41 years) were recruited for trial. They were asked
to perform eight scripted activities as shown in Table I with
four sensors simultaneously recording, and each activity was
repeated three times. Data was recorded from the sensors all
to a laptop via Bluetooth.

Each continuous activity was separated into several com-
ponents which belong to the following categories: Sitting,
Standing, Lying and Walking. In the research, there are
several activities which include the same component, but they
are recorded in different scenarios. For example, Case 1 and
Case 2 both consist of Sitting and Standing, but the signal
may be different due to the different scenario. Using these
datasets, the performance of the system can be investigated
using real-life activities. In this paper, we define sitting,
standing and lying as the static activities, and define walking
and up stairs as the dynamic activities.

B. Data Analysis

As an preliminary evaluation, the calibration drift and
sensor orientation affecting the recognition accuracies are
discussed. Meanwhile, the accuracy comparison of using
different number of sensors is also addressed. In this study,
two types of evaluation procedure were adopted:

1) Setting 1: The datasets used to train the classifier and
test the system are from the same subject. This method was
used to test the in-use calibration algorithm.

TABLE I: The continues activities

Description Categories
Case 1 Sitting down and standing up from an arm chair Sitting
Case 2 Sitting down and standing up from a kitchen chair Sitting
Case 3 Sitting down and standing up from a toilet seat Sitting
Case 4 Walking up and down stairs Walking
Case 5 Sitting down and standing up from a bed Sitting
Case 6 Lying down and getting up from a bed Lying
Case 7 Getting in and out of a car seat Sitting
Case 8 Walking 10m Walking
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2) Setting 2: The datasets collected from the seven sub-
jects are used to train the classifier, and the one from the
last subject is used to verify the recognition accuracies. This
method was used to test the elimination of sensor orientation
changing and the multi-sensor fusion.

Table II shows the comparison of the predefined calibra-
tion and the in-use calibration. It denotes that the drift of the
calibration parameters can slightly affect the performance of
the system, and the static activities are more sensitive to this
drift compared to the dynamic activities. This is due to the
recognition for the static activities mainly depends on the
value of the Mean feature.

In Table III, the impact of sensor orientation changing on
the recognition accuracies is addressed. The overall recog-
nition accuracies adopting the body reference coordinate
system are almost 50% higher than the ones using the device
coordinate system. Especially, the static activities such as
standing and sitting cannot be recognized using the device
coordinate system. This is due to that the value of the Mean
feature changes when the sensor orientation is changing.
Thus, it is necessary to transform the signals from the device
coordinate system to the body reference coordinate system.

Table IV denotes the maximum and minimum recognition
accuracies fusing different sensors. The overall recognition
accuracies rise with the number of sensors in the system.
The overall recognition accuracies using one sensor or up
to four sensors was 78.22%, 86.29%, 92.55% and 97.66%
respectively. Therefore, even if one sensor was not working
in the system, the recognition accuracy can also reach
92.55%. Therefore, the system can tolerate some network
faults. The sensor attached to the waist performs best using a
single sensor, and the combination using the sensor attached
to the waist and other sensors can achieve a high accuracy.

TABLE II: recognition accuracies comparison of using the
predefined parameters and the in-use calibration

Activities Normal calibration In-use calibration
Standing 89.76% 92.35%
Sitting 98.32% 99.48%
Lying 100.00% 100.00%

Walking 98.38% 98.45%
Up and down stairs 93.48% 93.52%

TABLE III: The recognition accuracies comparison of
using the device coordinate system and the body reference
coordinate system

Activities Device frame Body reference frame
Standing 0.00% 99.58%
Sitting 0.00% 100.00%
Lying 93.90% 100.00%

Walking 35.22% 93.55%
Up and down stairs 54.18% 84.34%

TABLE IV: The maximum and minimum recognition
accuracies fusing different sensors

Location( W: waist, T: thigh, S: side of the body and C: chest)
Sensors Num. Max Min

Single W (80.43%) T (70.88%)
Two W + T (95.39%) C + S (78.02%)

Three W + S + T (97.26%) W + S + C (80.00%)
Four W + S + T + C (97.66%) N/A

IV. CONCLUSION

In conclusion we have developed two algorithms for elim-
inating the impacts due to the calibration drift and the sensor
orientation changing on the recognition accuracies of the
system. Using the in-use calibration, the drift can be almost
removed from the signals. The signal transformation between
two different coordinate systems can significantly improve
the classification performance. The increase of the overall
accuracy can reach 50% or more in the worst situation.

Multi-sensor fusion can not only improve the performance
of the system, but also tolerate some networks faults. Using
four-sensor fusion, the recognition accuracy of 97.66% can
be achieved using Setting 2. Meanwhile, the system can also
work well when one sensor was not working. In addition, us-
ing a single sensor, the classification technique still achieves
an average recognition accuracy of 78.22%.
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