
  

  

Abstract — Sleep is characterized by episodes of immobility 
interrupted by periods of voluntary and involuntary 
movement. Increased mobility in bed can be a sign of disrupted 
sleep that may reduce sleep quality. This paper describes a 
method for classification of the type of movement in bed using 
load cells installed at the corners of a bed. The approach is 
based on Gaussian Mixture Models using a time-domain 
feature representation. The movement classification system is 
evaluated on data collected in the laboratory, and it classified 
correctly 84.6% of movements. The unobtrusive aspect of this 
approach is particularly valuable for longer-term home 
monitoring against a standard clinical setting.  

 

I. INTRODUCTION 

leep is characterized by long periods of immobility 
interrupted by brief episodes of movement. Low motor 

activity levels and prolonged episodes of uninterrupted 
immobility are associated with increasing sleep depth, 
whereas high activity levels are related to intermittent 
wakefulness during sleep, and arousals are often associated 
with movement [1]. Changes in the pattern of motor activity 
during sleep can be a disease marker. There are also sleep 
disorders associated with abnormal movements, like restless 
legs syndrome (RLS) and periodic limb movements 
(PLMS), that may adversely affect sleep. 
 Overnight polysomnography (PSG) is the gold standard 
for diagnosing sleep disorders associated with abnormal 
movements, but is obtrusive because patients have to sleep 
in a lab. Actigraphy has been used for in-home assessment 
of movement disorders in sleep for many years. With 
actigraphy, activity monitors are attached to a person’s wrist, 
leg, ankle or feet [2] to assess nocturnal activity. The 
collected data are very sensitive to where the device is worn, 
and to gather a complete picture of types of movements in 
bed, the devices must be worn on multiple limbs. In 
addition, the patient must record the time at which they go to 
bed and get up in the morning. Thus, although actigraphy 
has the advantage that it can be used for extended periods of 
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time, it places a burden on the patient with all the data 
collection requirements. 
 An alternative approach is to assess mobility in bed is by 
instrumenting the bed itself. Many solutions have been 
proposed [3-5]. Our research focuses on a solution that 
employs load cells installed at the corners of the bed. We 
developed a system that allows both detection of body 
movement (i.e., identification of the time intervals when a 
movement in bed occurs) and classification of the type of 
movement (i.e., determination of the type of movement 
performed in a given time interval). The well-proven load 
cell technology, based on strain gauge sensors, provides 
stable and reliable data and therefore it is a practical solution 
for long-term monitoring that can be valuable in sleep 
studies in populations who would not be able to wear a 
sensor during a study (like, for example, the elderly and 
patients with dementia). It offers advantages over actigraphy 
in terms of the ability to confirm and document times in bed. 
Another benefit is that it can provide a complete picture of 
types of movements in bed. This paper describes an 
approach to classify movements in bed into postural shifts, 
smaller position changes, and limb movements. We evaluate 
the approach on data collected in a laboratory experiment. 

II. METHODS 

 The goal of a movement classification method is to 
determine the type of movement (with respect to physical 
changes in posture) performed in a time interval. It is 
assumed that the time intervals where a movement in bed is 
detected are known a priori. Details about the movement 
detection algorithm used in this work can be found in [6]. In 
this work, movements in bed are classified into three classes 
that include the most typical movements found in the 
medical literature [7,8]:  
 Class 1 (major posture shifts): changes in body position 
that involve a torso rotation larger than 45 degrees. These 
large movements may represent movements related to 
getting into or out of bed, or large movements associated 
with wakefulness. 
 Class 2 (small and medium amplitude movements): 
changes in body position involving the head, arms, torso 
rotations smaller than 45 degrees, any combination of upper 
and lower limbs, and any combination of limbs and torso 
rotations smaller than 45 degrees. These medium amplitude 
movements may represent restlessness. 
 Class 3 (leg movements: isolated movement of lower 
limbs - thighs, legs and feet): these leg movements can be 
associated with PLMS or RLS. 

The movement classification approach uses a statistical 
model estimated from the subject’s movement data to 
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characterize a person’s motion patterns, producing three 
movement-class models for each subject. Details of the steps 
of the movement classification approach are described next. 

A. Pre-Processing 
In the pre-processing step, the coordinates of the body 

center of mass are estimated from the raw load cell signal of 
a detected movement. In this application, for a movement 
defined over a time interval [t0, t1] that is obtained through 
the movement detection algorithm, the trajectory of the body 
center of mass is given by the coordinates of the body center 
of mass xCM(t) and yCM (t). The trajectory is represented by a 
finite number of segments connecting the coordinates of the 
points (in this case, bed coordinates) representing all the 
positions taken by the center of mass of the body during a 
movement. Given the weights measured at each corner of 
the bed at each time t, wi(t), i = 1, 2, 3, 4, the length and 
width of the bed (xmax and ymax, respectively), and according 
to the two-dimensional Cartesian system illustrated in Fig. 1, 
the center of mass can be calculated, following the law of 
levers, as 

𝑥𝐶𝑀(𝑡) = 𝑥𝑚𝑎𝑥 �
[𝑤2(𝑡) − 𝑤2(𝑡0)] + [𝑤3(𝑡) − 𝑤3(𝑡0)]

∑ �𝑤𝑖(𝑡) −𝑤𝑖(𝑡0)�4
𝑖=1

� 

𝑦𝐶𝑀(𝑡) = 𝑦𝑚𝑎𝑥 �
[𝑤3(𝑡)−𝑤3(𝑡0)]+[𝑤4(𝑡)−𝑤4(𝑡0)]

∑ �𝑤𝑖(𝑡)−𝑤𝑖(𝑡0)�4
𝑖=1

�, 

where xCM(t) and yCM (t) are the coordinates of the body 
center of mass when someone is lying in bed at a given time 
t. The constant terms w2(t0), w3(t0), and w4(t0) correspond to 
the weight of the bed measured by corners 2, 3 and 4, at time 
t0, just before the person goes to bed. The goal of such 
normalization is to remove the effect of the unequal weights 
measured at the corners due to differences in the bed frame 
built or linens that can be on top of the bed.  

 
Fig. 1. Representation of the bed coordinates in a Cartesian system. 

 
An example of the trajectory of the body center of mass is 

illustrated in Fig.2. The “Beginning” and “End” arrows in 
Fig. 2 point, respectively, to the position of the body center 
of mass at the beginning and at the end of the movement, 
i.e., the initial and end points of the trajectory. The 
intermediary points used to approximate the body center of 
mass trajectory are estimated by the sampled measurements 
provided by the sensor. 

B. Feature Extraction 
Three features were extracted from the trajectory of the 

body center of mass: (1) the Euclidean distance between 
initial and end points of the trajectory, (2) the trajectory 
length, and (3) the variance of the trajectory in the y-
direction perpendicular to the sleeper’s body axis. The 

choice of features was motivated by considering the nature 
of the movements to be discriminated. 

 
Fig. 2. Coordinates of the trajectory of the body center of mass during a 
postural shift movement (class 1 movement). The “Beginning” and “End” 
arrows point, respectively, to the position of the body center of mass at the 
beginning and at the end of the movement. xCM and yCM  are given in 
centimeters. 
 The Euclidean distance between the initial and end points 
of the trajectory provides spatial information about a 
movement in terms of the displacement of the body center of 
mass as a result of the movement. Class-1 movements 
usually generate larger values for this feature than the other 
two classes because posture shifts produce larger 
displacement of the body center of mass. 
 The trajectory length, L, is estimated by summing the 
distances between adjacent (in time) positions of the body 
center of mass during the body movement, as 

L = ���𝑥𝐶𝑀(𝑡 + 1) −  𝑥𝐶𝑀(𝑡)�
2 + �𝑦𝐶𝑀(𝑡 + 1) − 𝑦𝐶𝑀(𝑡)�

2
T−1

t=0

 

where T is the duration of the movement. Intuitively, it is 
reasonable to assume that the trajectory length is 
considerably larger for class-1 movements, and smaller for 
class-3 movements. The trajectory length is very short for 
arm and head movements in class 2 because there is not a 
considerable displacement of mass during such movements. 
The trajectory length is not necessarily proportional to the 
duration of a movement because it depends on the parts of 
the body that were involved in the movement (different body 
parts affect the center of mass differently). For example, a 
movement that involves arms and head can last as long as 
other movements, but the observed changes in the position 
of the body center of mass during movement are likely to be 
small. 
 The sample variance of the trajectory in the y-direction, 
which corresponds to the motion from one side of bed to the 
other, also provides spatial information about a movement. 
The sample variance of the trajectory in the y-direction 𝜎�𝑦2 is 
calculated as follows: 

𝜎�𝑦2 =
∑ (𝑦𝐶𝑀(𝑖) − 𝑦�𝐶𝑀)(𝑦𝐶𝑀(𝑖) − 𝑦�𝐶𝑀)𝑇𝑁
𝑖=1

𝑁 − 1
 

where N corresponds to the number of observations over the 
interval of the movement and 𝑦�𝐶𝑀 corresponds to the 
estimated  mean over the interval. This feature is particularly 
useful in discriminating movements involving upper and 
lower body in class 2 from lower body movements in class 
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3. A displacement of the torso in the y-direction occurs more 
frequently when adjusting position for class 2 (medium 
amplitude) than when performing a leg movement. 

C.  Statistical Modeling 
The goal of the statistical modeling step is to estimate the 

parameters of a probability distribution that represents a 
certain movement class ck, using training data from 
movement k. In this work, each movement class is modeled 
using Gaussian mixture model (GMM), which describes the 
probability distribution of a given data set as a linear 
combination of several Gaussian densities [9]. The reason 
for using GMM is that it is capable of forming smooth 
approximations of arbitrarily shaped densities.  

In order to reduce the number of parameters, we use 
GMMs with diagonal covariance matrices. Although the use 
of a diagonal covariance matrix has the underlying 
assumption that the features are uncorrelated, this simplified 
representation is sufficient for the purpose of the 
classification task, since we have observed that the 
performances of the diagonal matrix GMMs are not 
significantly different that the performances of the full 
matrix GMMs.  

The maximum likelihood (ML) decision rule is used to 
classify every movement.  

III. EXPERIMENTAL SETUP 

In this section, we describe the sensors, data collection 
protocols, labeling, data preparation and performance 
measure.  

A. Sensors 
The load cells used in this work were single point load 

cells, model AG100 C3SH5eF (Scaime, France). The 
nominal load or capacity of each load cell was 100 kg, and 
the combined error (error due to non-linearity and hysteresis 
measured by the manufacturer) was 0.017 kg. An acquisition 
board (Elektrika Inc., model 335-2001 Rev. C) was 
connected to the load cells. Data from load cells under the 
bed were collected at 200 Hz, and downsampled to 10 Hz. 
The dowansampling was performed because the voluntary 
movements assessed in this work rarely exceed 3-4 Hz, and 
the energy of the load cell signal for the set of movements 
performed was mostly concentrated below 5 Hz.  

B. Subjects and Data Collection Protocols 
Fifteen adults (7 men and 8 women), ranging from 22 to 

45 years (mean age 30.4 ± 6.07 years old) and with no 
mobility problems participated in the laboratory study. Each 
subject signed a consent form approved by the university’s 
Institutional Review Board (OHSU IRB#7983), and received 
a compensation of $20.00 for his/her participation.  

Data were collected from 15 subjects that participated in 
an experiment with a twin size bed (size 99 cm x 190 cm). A 
group of 5 subjects also participated in an experiment with a 
full size bed (size 137 cm x 190 cm). Both beds had a box 
spring mattress. The goal for collecting data in different beds 
is to assess the generalizability of the approach proposed in 
this work. Since we have not found a significant difference 

in the classification performances across beds, the results 
shown are calculated based on combination of these datasets.  

Since the subjects were awake during the experiment, 
data were collected using two different protocols, free 
movement and fixed movement, to allow both diversity and 
uniformity of movements. In the fixed movement protocol, 
each subject performed 5 trials composed of 20 pre-defined 
movements each, done in different order in each trial. Each 
of the 5 trials performed comprised a different combination 
of the movement sets found in [10]. In the free movement 
protocol, each subject was asked to lie in bed and freely 
move 10 times. Subjects were instructed to move 
accordingly to the types of movements typically seen during 
sleep. Subjects were prompted to move by a beep, and had 
approximately 15 seconds to perform a movement and then 
to rest in a still position.  

C. Assessment of Actual Movements 
We used a video technique as the ground truth for this 

experiment. To allow a quantitative measure of body 
movement using video, subjects wore cloth bands of 
different colors on the head, arms, legs, and torso. The actual 
movement intervals were estimated by tracking the 
trajectories of the cloth bands. The location of every cloth 
band, consequently the respective part of the body, is 
estimated using template matching [11]. Details about the 
analysis of video data can be found in [10].  

D. Data Preparation  
For each subject, movement data from the trials were 

randomly split into 2 sets: training (3/5 of the dataset) and 
testing (2/5 of the dataset). The training data contained 1711 
movements and the testing data contained 1107 movements. 

E. Performance Measure  
The performance measure used in this work was the 

classification rate across all subjects, which is the proportion 
of test samples from all subjects that are correctly classified. 
The classification rate across all subjects was used because 
we want to measure the overall performance of the classifier 
independently of the subject. Unless indicated otherwise, all 
comparisons between different classifier conditions were 
done with the McNemar’s test [12] (α = 0.05).  

IV. RESULTS AND DISCUSSIONS 

 This section presents and discusses the movement 
classification performance. The effect of training size in the 
classification performance is also analyzed.  

A. Movement Classification Performance 
Each class was modeled by a diagonal-covariance GMM 

estimated over some training data from the respective 
subject. The number of mixture components in the GMMs 
was estimated using 3-fold cross-validation of the training 
data. Training data from each subject were randomly split 
into 3 disjoint sets, each containing roughly the same 
number of data samples. Each set was used in turn as an 
independent test set while the remaining 2 sets were used for 
training. The classification rate was estimated over all sets. 
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The results showed that two mixture components yielded the 
best performance in the training data for all subjects.  
 The overall classification rate on the test data was 84.6%, 
and the corresponding confusion matrix is presented in 
Table 1. The most frequent errors were between classes 2 
and 3 (medium movements versus leg movements). A closer 
examination of the errors showed that, in many cases, the 
classifier mistakenly classified movements consisting of leg 
movements and very small adjustments of head or torso 
(class 2) as leg movements (class 3). In such cases, the small 
movements in the upper body did not substantially affect the 
overall trajectory of the center of mass.  

TABLE 1 
CONFUSION MATRIX FOR THE 3-CLASS MOVEMENT CLASSIFICATION 

PROBLEM: LARGE, MEDIUM AND LEG MOVEMENTS 
 Estimated Label 

Large Medium Legs 

T
ru

e 
L

ab
el

  Large 325 9 2 
 Medium 13 391 101 
Legs 2 44 220 

 The classification rates for individual subjects ranged 
from 76.7% to 95.3%. The χ2 test for differences among 
proportions [13] showed a difference in classification 
performance between subjects, at a significance level of 0.05 
and with 14 degrees of freedom. We speculate that there are 
differences in the classification performance across subjects 
because the intra-subject movement variability may be larger 
in some subjects, which results in a larger intra-class 
variance. 

B. Effect of Training Set Size 
The use of subject-dependent models requires learning 

parameters for each subject with data of each subject. The 
disadvantage of this approach is that it takes time to collect 
subject-dependent data. To select the most appropriate 
parameterization, it is important to know the minimum 
amount of data necessary to train the model for each person.  
 We examined how the classification rate on the testing 
data changed as we progressively increased the number of 
training samples per class. Because the number of samples 
per class is different for each subject, we included in this 
analysis only those subjects who had at least 30 movements 
per class. The overall classification rate, which was 
calculated on the test data previously selected for each 
subject, was computed as a function of the number of 
training samples, with the number of samples increasing 
from 5 to 30 in increments of 5. Using ten samples per class, 
the classification rate was 81.5%, which was significantly 
greater than the classification rate using only five samples 
(p < 0.01). However, the classification rate did not increase 
significantly when all available samples were used (83.2%), 
and we therefore concluded that at least 10 samples per class 
are necessary to train the model for each person.  
 

V. CONCLUSIONS 

We presented a method for subject-dependent 
classification of movements in bed from load cell signals. 
The approach used Gaussian mixture models estimated on 
different features from the body center of mass to represent 
each class. We showed that this approach is applicable in 
real settings because it does not require a large amount of 
training data (a minimum of 10 samples per class is 
necessary to achieve comparable classification results). The 
classification performance was 84.6%.  
 Since the evaluation of the system was based mostly on 
voluntary movements that were performed during wake 
periods, an important advance in this work is to evaluate the 
system in real sleep conditions. We have started a new study 
to evaluate the system with load cell data from patients 
being monitored with PSG in a sleep laboratory.  
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