
  

  

Abstract—The myoelectric signal is a sign of control of the 

human body that contains the information of the user's intent 

to contract a muscle and, therefore, make a move. Studies 

shows that the Amputees are able to generate standardized 

myoelectric signals repeatedly before of the intention to 

perform a certain movement. This paper presents a study that 

investigates the use of forearm surface electromyography 

(sEMG) signals for classification of five distinguish movements 

of the arm using just three pairs of surface electrodes located in 

strategic places.  The classification is done by an adaptive 

neuro-fuzzy inference system (ANFIS) to process signal 

features to recognize performed movements. The average 

accuracy reached for the classification of five motion classes 

was 86-98% for three subjects. 

I. INTRODUCTION 

HE development of systems managed by myoelectric 

signals with the intention to reproduce the human arm 

movement still is target of many investigations [3]. In 
recent years, there has been an explosion of interest in 

computational intelligence (CI) as evidenced by the 

numerous applications in health, biomedicine, and 

biomedical engineering. CI techniques are computing 

algorithms and learning machines, including artificial neural 

networks, fuzzy logic, genetic algorithms, and support 

vector machines [1]-[13].   
Many studies are being conducted in able-bodies subjects 

to verify the feasibility and performance of different 

algorithms for pattern recognition using EMG signals from 

the forearm muscles [1]-[13]. In these studies are usually 

employed a high number of electrode pairs, ranging for 4 to 

12. Using classification patterns techniques such as LDA 

[3],[11], fuzzy logic [2],[5],[6],[7],[12], among others, was 

found high accuracies (>90%) for the classification of 

different moves ranging between four to ten. This suggests 

that it is possible to achieve high accuracy using several 

pairs of electrodes.  

A recent study estimated that for twelve pairs of 
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electrodes was possible to classify ten different movements 

with an accuracy of 81.2% and decreasing the number of 

pairs of electrode to eight, the classification accuracy 

dropped 1-3% [3]. This study also produced an average 

classification accuracy of 88.5% reducing the motion classes 

to six and using four channels of sEMG. 

It is important to notice that almost all of the previous 

studies used at least four pairs of electrodes to evaluate the 

performance of the pattern recognition algorithms. On the 

other hand, a prior study has shown that Artificial Neural 

Network was able to classify six movement classes with an 

average accuracy of 78% with just three pairs of surface 

electrodes [13]. The proposed system in this paper also uses 

three pairs of electrodes for signals acquisition, and 

processes these signals with an adaptive neuro-fuzzy system 

for recognition of performed movements.  

II. METHODS 

A. Experimental Procedures 

The data was collected from three able-bodies subjects 

over three consecutive trials: calibration, adaptation and 

performance test. 

The calibration is an important step because its aims to 

check if the electrodes are positioned correctly and also to 

determine a threshold value that will be used later to detect 

the occurrence of a movement. This procedure involves 

capturing the muscle signal during one second at a time of 

relaxation and in a moment of maximum voluntary 

contraction (MVC). If one of the electrode’s pairs were not 

correctly positioned, the signal received will have low 

quality compared to the baseline signal and would be 

necessary to do the reposition of the electrodes until the 

signal to noise ratio reaches at least a rate greater than 10, 

based on the value established in tests of the signal 

acquisition previously performed. A percentage ranging 

from 15 to 30% of the average peak values, acquired from 

the MVC movement, is also used as threshold which 

indicated whether occurred or not a muscle contraction. 

The adaptation’s trial has the function to adapt the system 

for each subject, once it depends on the variability due to 

different muscle activities that each person can make. The 

trial consists in a session with five repetitions for each 

chosen movement to train the pattern classification 

algorithm. 

In order to verify the feasibility and accuracy of the 

system is accomplished the performance test. The sEMG 

data were collected over 10 sessions. A session consists in 
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Figure 2. Non-invasive placement of electrode

[14]. 

 

In this study five classes of hand, 

motion plus a no movement class were

five chosen movements were hand contr

and extension, and forearm flexion and ro
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C. SEMG Preprocessing an

Before the pattern classifica
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For recognizing sEMG pat

was applied. Neuro-adaptive 

method for the fuz
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Figure 4. Structure of fuzzy system with three inputs and 

one output. 

 

To design the system, was used “prod” as AND method, 

“probor” as OR method and “weight average” as 

deffuzification method. The system has three inputs, six 

fuzzy rules and one output, where Ch1 is the first input and 

so on for others inputs. Table I represents these rules with 

linguist expression. These expressions were applied from 

lower range to upper range of inputs as low, average and 

high. The output represents the characterized movement. 

Each output is obtained by combining all inputs. 

 
TABLE I 

REPRESENTATION OF THE FUZZY RULES 

IF THEN 

sEMG 

Ch1 

sEMG 

Ch2 

sEMG 

Ch3 

Output 

Average Average Low Hand Contraction 

High Average Low Wrist Extension 

Average High Low Wrist Flexion 

Average Average High Forearm Flexion 

Average Average Average Forearm Rotation 

Low Low Low None 

 

E. Statistical Analysis  

Many experiments involve more than two factors. For 

statistical validation methodology was used the “Design and 

analysis of three-factor experiments – Three-Factor Fixed 

Effects Model” [15]. Consider the three-factor-factorial 

experiment, with underlying model: 
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where � is the overall mean effect, �
 is the effect of the ith 

level of factor A (three subjects),  
 is the effect of the jth 

level of factor B (five movements: wrist flexion, wrist 

extension, hand contraction, forearm flexion, forearm 

rotation, forearm rotation and hand contraction), !� is the 

effect of the kth level of factor C (three different muscles or 

three channels 1-3), �� �

 is the effect of the interaction 

between A and B, ��!�
� is the effect of the interaction 

between A and C, � !�
� is the effect of the interaction  

 

 

between B and C, �� !�

� is the effect of the interaction 

between A, B and C and "

�� is a random error component 

having a normal distribution  with mean zero and variance .�. Notice that the model contains three main effects (A, B 

and C), three two-factor interactions, a three-factor 
interaction, and an error term. This experimental design is a 

completely randomized design. The hypotheses are: 

(a)�/01��� � �� � 2 � �3  no main effect of factor A or /�1 
at least one �
 4 5 

(b)/01� � �  � � 2 �  �  no main effect of factor B or /�1 
at least one  
 4 5 

(c)/01�!� � !� � 2 � !6  no main effect of factor C or /�1 
at least one !� 4 5 
(d)/01 �� ��� � �� ��� � 2 � �� �3�  no interaction or /�1 at least one �� �

 4 5 
(e)�/01 ��!��� � ��!��� � 2 � ��!�36  no interaction or /�1 
at least one ��!�
� 4 5 
(f)�/01 � !��� � � !��� � 2 � � !��6  no interaction or /�1 at least one � !�
� 4 5 
(g)�/01 �� !���� � �� !���� � 2 � �� !�3�6 no 
interaction or /�1 at least one �� !�

� 4 5 
 

The F-test on main effects and interactions follows 

directly from the expected mean squares. These ratios follow 
F distributions under the respective null hypotheses. We will 

use 7 � 5859 (significance level). The analysis of variance 

for a three-factor experiment showed that the main effects 

due to the three channels, three subjects and five movements 

are significant, in other words, there is a strong evidence to 

conclude that /0�is not true. Thus, it is possible to say that 

the output rms for each one of the three channels, three 

subjects and five movements are quite distinct from each 

other, and thus, the myoelectric signals are also distinct and 

so can be treated as distinct channels by the developed 

adaptive fuzzy logic analysis model. The results of this 

model showed that the interactions are true, i.e. �� �% ��!�% � !� and �� !� are significant. However, the 

ANOVA doesn’t identify which means are different. 

Methods for investigating this issue are called multiple 

comparisons methods. In this study we used the Fisher’s 

least significant difference (LSD) method. From this 

analysis, we see that there are significant differences 

between all pairs of means.  

III. EXPERIMENTAL RESULTS 

The signal processing was performed with three 

individuals and the system performance was verified 

for five distinct movements in terms of accuracy over ten 

trials. All subjects participated in the same process of raining  

and system testing. The threshold used was 30% in respect 

to the correspondent channel’s MVC. 

In order to validate the experiment, a statistical analysis 

based on Fisher’s method was computed. Analyzing the 

results, it can be stated that the average values of the 

myoelectric signals (data in RMS) are significant. As an 

example, Figure 5 presents a possible relationship to the 

experimental data.  It’s interesting to notice that the subject 2  
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Figure 5. Relationship between the average of the
three different subjects and mu
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Figure 6. Classification accuracy for 5 moveme

subjects. 
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