
  

  

Abstract - In this paper, a novel method based on analysis of 

dynamic response of vestibular system for diagnosis of 

Parkinson’s Disease (PD) is introduced. Electrovestibulography 

(EVestG) signals are recorded from the ear canal in response to 

a vestibular stimulus. EVestG signals are in fact the vestibular 

response modulated by more cortical brain signals. We used 

EVestG data of 20 patients with PD and 26 age-matched 

healthy controls recorded in a previous study. We calculated the 

Katz Fractal Dimension (FD) of the extracted timing signal of 

firings during contralateral and ipsilateral stimuli of both left 

and right ear. We used multivariate analysis of variance 

(MANOVA) to select pairs of features showing the most 

significant differences between the groups. Then, Linear and 

Quadratic Discriminant (LDA, QDA) classification algorithms 

were applied on the selected features. The results have shown 

above 77.27% accuracy. Given the small population of the 

subjects and the patients were at different stage of disease, the 

results encourage continuing exploration of the application of 

EVestG for PD diagnosis and perhaps as a quick and non-

invasive screening tool. 

I. INTRODUCTION 

diopathic Parkinson's disease (PD) is the second largest 

neuro-degenerative disorder estimated to afflict 

approximately 3% of the population over the age 65 [1-3]. 

There is no way known to prevent or to cure PD. The end 

stage of the disease can lead to pneumonia, choking, severe 

depression, and death.  

Parkinson’s disease belongs to a group of conditions 

called motor system disorders. It occurs as the results of a 

slow and progressive loss of dopaminergic neurons. These 

are located in the midbrain region called substantia nigra 

pars compacta, which is a part of basal ganglia of the brain. 

The loss of dopaminergic neurons affects nigrostriatal 

neurons in the striatum, and results in a reduction in 

dopamine concentration [4]. The lack of dopamine 

neurotransmitters in neural pathways weakens the motor 

cortex signals that coordinate muscle movement [5]. 

Currently, no early detection method exists for PD [6] and 

its diagnosis is based on medical history and neurological 
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examination. A definite diagnosis of PD requires autopsy 

[7]. The aim of this study is to investigate the possibility of 

PD diagnosis by analyzing the vestibular response to a tilting 

stimulus.  

There is a clear link between dopamine and the vestibular 

system; dopamine receptors (D2) have been identified in 

medial vestibular nuclei and lateral vestibular nuclei [8]. 

Also, meaningful levels of dopamine have been detected in a 

region of the vestibular nuclei [9]. There is an evidence to 

suggest that dopamine might exert a modulatory action on 

the vestibular system, either by a direct action on the 

vestibular neurons or by modulation of GABAergic 

transmission [10]. Abnormalities in the vestibular system 

have been previously documented in PD, in relation to an 

abnormal vestibular-ocular reflex [11]. 

Electrovestibulography (EVestG) [12], a non-invasive 

technique to record neural activity from the vestibular 

apparatus and vestibular nuclei, has been previously applied 

to PD diagnosis [13]. EVestG measures a vestibular driven 

response stimulated from passively tilting a participant who 

is seated in a special hydraulic chair, placed in an electrically 

and acoustically shielded chamber.  The EVestG signal is 

recorded during dynamic and static phases via an electrode 

resting proximal to the tympanic membrane [12]. The 

electrodes are simply and painlessly positioned and rested 

close to the left and right ear drums of the test subject. 

Figure 1, shows the recording system with the hydraulic 

chair. 

In a previous study [13] on the application of EVestG 

signals for PD diagnosis, a biofeature extracted from the 

shape of the average field potential of EVestG signal was 

found significant between the two groups of patients and 

controls; the correlation of this biofeature with the severity 

of the disease was also shown to be significant [14]. 

 In this study, we investigate whether the fractal dimension 

of the firing time pattern of the vestibular field potentials 

recorded by EVestG can be used for diagnosis of PD. Hence 

we used the data of the previous study [13] and applied the 

Katz fractal dimension among patients with PD and control 

subjects.  

II. MATERIALS AND METHOD 

A. Data 

Data of this study was adopted from a previous study [14], 

[15] which included data of 20 PD patients and 26 age-
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matched healthy as controls. The PD patients were diagnosed 

by a neurologist. The patients were tested, while they had 

been off their medication (Levadopa preparations) for at 

least 4 hours and typically overnight. Among PD subjects, 6 

subjects were evaluated to have Parkinson’s symptoms as 

mostly on the right, 5 on the left and 9 on both sides of their 

body. The severity of the disease was assessed using the 

Modifed Hoehn and Yahr Parkinson's Disease Staging Scale 

[16]. Based on this scale, one patient was severely affected, 

while the others were in the mild to moderate stages. EVestG 

data, recorded at 44100 Hz, of the side-tilt trial was used in 

this study.  

B. EVestG Experiment 

The whole EVestG experiment [12] includes several tilting 

stimuli. The one that is used in this study is the side tilt 

stimulus. The side tilt stimulus takes 120 s; it begins with a 

20 s background (steady state), while the subject is sitting in 

a still position without any inclination, followed by a 3 s tilt 

to the right (about 40 degrees), 17 s rest in the tilted position, 

3 s moving back to center, 40 s rest at the center position, 3 s 

tilting to the left, 17 s rest at the left position, 3 s return to 

the center and 20 s rest at the center. Figure 2 shows the 

pattern of the chair movement during a side tilt trial. The 

periods of interest are 1.5 s before the movement and the 3 s 

tilting stimuli. Given that each movement has an acceleration 

and deceleration phases, assuming a minimum jerk 

movement, the first 1.5 s after the onset of the tilt is marked 

as OnAA and the next 1.5 s is marked as OnBB, representing 

acceleration and deceleration phases, respectively.  Since the 

chair is tilting to both left and right while recording both 

right and left ears, there are both contralateral (CT) and 

ipsilateral (IP) stimuli. 

The EVestG-evoked response field potentials were 

extracted using a Neural Event Extraction Routine (NEER) 

[17-18]. Furthermore, in the NEER Algorithm, the sample 

numbers of each detected field potential is registered and 

saved as the Field Potential Index vector (simply called 

firing time signal) for every segment in every tilt of the 

experiment. 

C.  Signal Analysis 

We used the firing time signal of only the OnBB segments 

of the tilts from center to either side.  Given that signals of 

both ears were recorded, for every subject we have 4 signals: 

contralateral left (CTL), contralateral right (CTR), ipsilateral 

left (ITL) and ipsilateral right (ITR). Figure 3 shows the 

probability distribution function of the time interval between 

the successive firing potentials for one control subject.  

Basically, firing time signals are smooth increasing curves 

during 1.5s of OnBB segment. We excluded the firing time 

signals that had less than 1.36s duration due to corruption by 

artifact. In total 3 ITR, 2 CTR, 1 ITL and 1 CTL segments of 

entire data population were excluded.  

D. Katz Fractal Dimension 

Fractal dimension (FD) mathematically refers to a non-

integer or fractional dimension of a self-similar (or a self-

affine) object that exceeds its Topological dimension [19]. 

The self-similarity (or self-affinity) of the object is 

confirmed if a portion of the object is exactly (or 

statistically) a scaled down version of itself. FD values also 

indicate the complexity of a pattern, the degree of 

irregularity or the quantity of information embodied in a 

waveform pattern in terms of morphology, entropy, spectra 

 
Fig. 1. The recording system with the hydraulic chair  

 

 

Fig. 3. The probability distribution function of time interval signal for 

ITL, ITR, CTL, and CTR tilts for one control subject.  

 

 
Fig. 2. The pattern of the chair movement during a side tilt trial. 
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or variance [19]. FD is often used as a characteristic feature 

for diagnostic purposes using biological signals. In this study 

we used Katz algorithm to calculate the FD values due to its 

robustness respect to noise [20]. We also calculated FD 

values with Higuchi method [21] and Variance Fractal 

Dimension method [19] but none of them ended in 

significant results. 

In Katz Method [22], the Dimension of a curve is defined 

as: 

 
.

)log()log(

)log(

n
L

d

n

+
                                                             (1) 

where L is the total length of the curve or sum of distances 

between successive points, d is the diameter estimated as the 

distance between the first point of the curve and the point 

which provides the farthest (maximum) distance. To be 

independent of the measurement units, parameter   n = L/a, is 

defined, in which a is the average step or average distance 

between successive points and n is the number of the steps in 

the curve. The FD compares the actual number of units that 

compose a curve with the minimum number of units required 

to reproduce a pattern of the same spatial extent.  

We calculated the Katz FD of the normalized (divided by 

the total duration of each signal) firing time signals of ITL, 

ITR, CTL, and CTR for each subject, and investigated the 

significance of these 4 FD features using Analysis of 

Variance (ANOVA). Furthermore, we ran multivariate 

analysis of variance (MANOVA) to select pairs of features 

with most significant difference in 2 dimensions between the 

two groups [23].  In all statistical tests p < 0.05 was 

considered significant.  

E. Linear and Quadratic Discriminant Analysis 

Once the best pairs of features were selected, we applied 

the linear and quadratic discriminant classifiers (LDA & 

QDA) on the selected pairs of features, which are the 

standard approach to supervised classification problems. 

They estimate the likelihood probability of each class as a 

Gaussian distribution. LDA has an extra condition of 

assuming identical covariance matrices for all of the classes. 

Posterior distributions were used to estimate the class for a 

given test point. The Gaussian parameters for each class can 

be estimated from training points with maximum likelihood 

(ML) estimation [24]. Due to the small size of data we used 

leave-one-out method for training and testing the classifier. 

Leave-one-out routine uses all data except one for training 

and use the left-out data for test; this procedure is repeated 

till all data are being used as test data once. The 

misclassified subjects are found through testing these 

classifiers by using the Leave-one-out method [24]. 

III. RESULTS  

Table I shows the results of ANOVA and MANOVA on 

the 4 FD features and the 6 pairs among the subjects. As 

shown, most significant pairs were CTL-CTR and CTR-ITR.   

Hence, these two pairs were selected for further analysis.  

Table II shows the results of LDA and QDA 

classifications in terms of accuracy, sensitivity and 

specificity for each pair of features among the two groups of 

controls and PD patients. Figures 4 and 5 show the 

classification curves for the above mentioned pairs of 

features. As can be seen, QDA classification outperforms the 

LDA classifier in this population. Out of the two pairs of 

features, the CTR-CTL pair outperformed the other one.  

IV. DISCUSSION 

Fractal Dimension of the firing time signals was selected 

as a feature to represent a property of firing pattern of 

vestibular response.  The FD values of the contralateral and 

ipsilateral tilts showed statistically significant difference 

between the two groups of PD and controls. The FD values 

of firing time signals of the controls were higher than that of 

the PD patients, implying a higher complexity of the signals 

of control group versus PD patients. This is an interesting 

result; because the average total number of firings in PDs 

was observed to be distinctively greater than that of controls.  

However, despite this observation, the number of firing 

points required to reproduce the pattern of firing is lower in 

PD patients compared to that of the controls. Furthermore, 

higher FD values in controls represent higher degree of self 

similarity in such curves in comparison to that in PD 

patients. This may imply a more synchronous firing among 

control subjects than in PD patients.  

The overall performance of both of the classifiers was 

high, while QDA classifier outperformed the LDA.  Three 

patients who were misclassified by QDA: one had PD 

symptoms on both side of the body with severity of 2 out of 

7, the second had PD symptoms on left part of body with 

severity of 1 out of 7 and the third had PD symptoms on 

right part of body with severity of 1 out of 7. The highest 

severity degree for our PD patients was 5. This indicates that 

the method is capable of identifying moderate and severe PD 

cases but encounters errors when the patients are in mild 

level of the disease. Overall, the results are very 

encouraging. However, the method must be tested in a larger 

population. Also, the combination the two selected pairs for 

classification should also be investigated.  

V. CONCLUSION  

We applied Katz algorithm to calculate the FD values of 

the firing time signals to produce a new set of biofeatures for 

identification of PD subjects from age-matched control 

subjects. Higher FD values of the controls imply the 

difference of the groups in terms of complexity and the self-

similarity of neural firings in the vestibular response. The 

high sensitivity of the QDA classification is encouraging to 

use this method on a larger population. However, other 

classification methods which do not assume normal 
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distribution of the data can be applied. In this study we only 

used the deceleration phase (OnBB) of the tilts. The 

inclusion of the acceleration phases may also improve the 

accuracy of the classification. 

Overall, the results of this study shows a new potential of 

EVestG signals towards generating an adequate set of 

biofeatures for diagnosis, monitoring, and perhaps measuring 

the efficacy of drug treatment during early PD stages. The 

results may lead to a simple, objective, and non-invasive 

clinical assessment of Parkinson Disease. 
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Fig. 4.  The classification curves (Linear and Quadratic) using      

CTL-CTR features. C and PD represent controls and PD patients. 

 

 

TABLE II 

MESURES OF THE CLASSIFICATION PERFORMANCE 

ACC: ACCURACY, SPEC: SPECIFICITY, SENS: SENSITIVITY 

Katz Fractal Dimension of Firing Curves 

 QDA Classifier LDA Classifier 

 
Acc 

(%) 

Spec 

(%) 

Sens 

(%) 

Acc 

(%) 

Spec 

(%) 

Sens 

(%) 

CTL-CTR 81.81 72 94.73 77.27 72 84.21 

CTR-ITR 73.8 65.21 84.21 71.42 60.86 84.21 

TABLE I 

STATISTICAL ANALYSIS (ANOVA AND MANOVA) FOR SELECTED PAIRS OF FEATURES OF KATZ FD OF FIRING CURVES 

Katz Fractal Dimension  of firing time signals 

ANOVA MANOVA 

CTL CTR ITL ITR CTL-CTR ITL-ITR CTR-ITR CTL-ITL CTL-ITR CTR-ITL 

0.021 0.003 0.38 0.006 0.002 0.036 0.004 0.072 0.02 0.013 

 

 
Fig. 5.  The classification curves (Linear and Quadratic) using    

CTR-ITR features. C and PD represent controls and PD patients. 
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