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Abstract— The clinical hallmarks of Parkinson’s disease (PD)
are movement poverty and slowness (i.e. bradykinesia), muscle
rigidity, limb tremor or gait disturbances. Parkinson’s gait
includes slowness, shuffling, short steps, freezing of gait (FoG)
and/or asymmetries in gait. There are currently no validated
clinical instruments or device that allow a full characterization
of gait disturbances in PD. As a step towards this goal, a four
accelerometer-based system is proposed to increase the number
of parameters that can be extracted to characterize parkinso-
nian gait disturbances such as FoG or gait asymmetries. After
developing the hardware, an algorithm has been developed, that
automatically epoched the signals on a stride-by-stride basis
and quantified, among others, the gait velocity, the stride time,
the stance and swing phases, the single and double support
phases or the maximum acceleration at toe-off, as validated
by visual inspection of video recordings during the task. The
results obtained in a PD patient and a healthy volunteer are
presented. The FoG detection will be improved using time-
frequency analysis and the system is about to be validated with
a state-of-the-art 3D movement analysis system.

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative
disorder, clinically characterized by motor impairments [1]
including limb tremor, decreased movement speed and am-
plitude, increased limb rigidity and gait disturbances. Com-
mon signs of Parkinson’s gait include slowness, shuffling,
short steps, and/or difficulty in initiating or stopping gait
[2]. Patients may also have freezing of gait (FoG) and/or
asymmetries in gait. In PD, the ability to regulate stride-
to-stride fluctuations decreases and gait variability increases.
These gait disturbances are a major source of disability and
reduced quality of life in PD because they lead to limitations
on mobility and autonomy and an increased risk of falls [3],
[4]. Detecting subtle gait disturbances in PD remains chal-
lenging. The detection of motor asymmetry may be helpful
for the increase of PD diagnosis accuracy [5]. Detecting FoG
episodes, especially subtle ones, is a particular challenge,
as freezing is a common cause of falls in PD [6]. To date
there are no validated clinical instruments or device that
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allow a full characterization of gait disturbances in PD. The
motor deficits are clinically evaluated using scales such as the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[7]. However, the use of the MDS-UPDRS is limited because
the scores given by MD are partly subjective. Indeed, the
scores can vary across raters and for an individual rater at
different times [8]. Objective quantitative measures can assist
clinicians in evaluating mobility deficits. Several studies have
focused on gait analyses in Parkinson’s disease [4] as well
as on healthy subjects [9] using various technologies such as
visual marker-based systems [10], pressure sensors [11] or
inertial sensors [9]. Visual marker-based systems such as the
Codamotion [12] are often used as gold standards because of
their three-dimensional gait analysis accuracy [13]. However,
these systems are expensive and difficult to use in the daily
clinical evaluation of PD patients [11]. Pressure sensors can
be used to set up pressure-sensitive walkways to record gait
variations [11]. However, these walkways are expensive and
length-limited. Inertial sensors such as accelerometers are
small, lightweight, well adapted for portable devices and
can record components of the movements as accelerations or
displacements [14]. Accelerometers have become a preferred
choice for continuous, unobstrusive and reliable method in
human movement quantification [15]. For example, using
an accelerometer-based device placed on the lower back of
first-degree relatives of PD patients, increased variability in
gait has been observed in asymptomatic carriers of genetic
mutation that predispose to PD [16]. In the present study,
we propose an extension of this approach by using 4 ac-
celerometers placed directly on the subjects’ feet (heel and
forefoot) to increase the number of parameters that can be
extracted to characterize parkinsonian gait disturbances. This
low-cost device allows, among others, the evaluation of gait
asymmetries and FoG, unlike other widespread commercial
systems [9], [17], while maintaining a functional gait. Sec-
tion II describes the material, the method used to acquire
the data and the features extracted. Section III presents the
gait performances and the features extracted on a healthy
volunteer and on a parkinsonian patient and discusses these
results. Finally, section IV presents the conclusion and future
work.

II. MATERIAL AND METHODS

The system is composed of four tri-axis accelerometers
(Fig. 1) recording accelerations up to ± 10 g (1 g =
9,81 m/s2). Accelerometers have been calibrated using a
minimization function based on the norm and direction of the
gravity field [18]. Accelerometers were placed on the dorsal
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Fig. 1. The accelerometer-based device can count up to 4 sensors recording
accelerations up to ± 10 g at the sampling frequency of 100 Hz.

part of the distal end of the first metatarsian, just before
the metatarsophalangian joint with the hallux (hallux sensor)
and above the lateral malleolus (heel sensor) of each foot.
Data were recorded at the sampling frequency of 100 Hz.
The z-axis of the accelerometer is vertically perpendicular
to the associated limb, the x-axis is parallel and the y-
axis is horizontally perpendicular. Parkinsonian patients and
healthy volunteers were recruited at the Cyclotron Research
Center and at the University Hospital Center, Department
of Neurology, in Liege. They provided written informed
consent. This research protocol has been approved by the
local ethical committee. Subjects were asked to walk 20
meters in a straight hallway, at their preferred, self-selected
usual speed. Subjects walked with their usual shoewear. Per-
formances were recorded by camera to allow evaluation by
movement disorder specialists. All data have been processed
with Matlab 7.6.0 (MathWorks, Natick, MA, USA).

First, a period of steady state walking is selected by
removing the acceleration and deceleration phases. The first
processing step is to epoch the recorded data to isolate each
stride from the heel sensors. For each foot, a new stride is
defined when the heel hits the ground (heel strike), which
results in a high amplitude and high frequency peak in the
heel sensor x-axis signal. A step is defined between two
successive heel strikes of both right and left feet. These peaks
have been identified using the high-pass filtered version of
this signal. The high-pass filter is a 4th order Butterworth
filter with a cut-off frequency of 10 Hz. Within each stride,
several events are then detected from the hallux sensors: the
time when the toes hit the ground (toe strike), the time when
they leave the ground (toe-off) and the time for maximum
toe-off acceleration (Fig. 2).

According to these events, features can be extracted. The
gait velocity is first computed as the time needed to walk the
20 meters. The step time is the mean time interval of two
successive heel strikes between both right and left feet. The
step frequency is also a feature of interest. The stride time is
the mean time interval between two successive heel strikes
of each foot. The strides are defined for the right foot and

the left foot. The stride-based features are thus computed
once for each foot. The stride length is the mean length of
the stride for each foot. It is computed from the stride time
and the gait velocity. The stride frequency is also computed.
The stance phase, i.e. the mean percentage of the stride
time when the foot is on the ground, is defined between
the heel strike and the toe-off events (Fig. 2). The swing
phase, i.e. the mean percentage of the stride time when the
foot is off the ground, is defined between the toe-off and
the next heel strike event. The single support phase, i.e., for
the right foot, the mean percentage of the right stride time
when the left foot is off the ground, is defined between the
left toe-off and the next left heel strike event. The double
support phase, i.e., for the right foot, the mean percentage
of the right stride time when both feet are on the ground, is
defined between the right heel strike and the next left toe-
off event. FoG is clinically defined as an episodic inability
to generate effective stepping [6]. The FoG episodes are
detected according to the difference between each individual
double support time and the mean double support time. The
mean time of the freezing episodes is depicted in the FoG
time feature. For the stride-based features, the strides with
long episodes of FoG are removed to avoid biased features.
The mean maximum acceleration at heel strike depicts the
strength of the heel contact on the ground and is extracted
from the norm of the heel sensor signals. The mean maximum
acceleration at toe-off depicts the strength of the swing
phase initiation and is extracted from the norm of the hallux
sensor signals. The variability of each feature is determined
by calculating the coefficient of variation : 100 × standard
deviation/mean. The regularity and symmetry features are
based on the unbiased autocorrelation function A [19]. For
regularity, the autocorrelation coefficients Am are the sum

Fig. 2. z-axis signals of the hallux sensor of right and left feet of a healthy
volunteer. In thin line, the left sensor and in thick line, the right sensor. The
circles are represented when the heel hits the ground (detected on the heel
sensors). The squares are represented when the toes hit the ground (toe
strike) and the triangles when they leave the ground (toe-off ).
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of the products of one foot hallux sensor norm signal ni

(i = 1, 2, ..., N ) multiplied by the time-lagged replication
of the signal (ni+m), where m is the lag parameter (1).

Am =
1

N − |m|

N−|m|∑
i=1

ni ni+m (1)

The autocorrelation function is then normalized to obtain
1.0 at zero lag. The first dominant period in the signal A
represents a phase shift of one stride. The signal amplitude
is then an expression of the regularity of the acceleration
norm between two neighboring strides. For the symmetry, the
autocorrelation coefficients Am are the sum of the products
of the right foot hallux sensor norm signal multiplied by
the time-lagged left one. The signal amplitude of the first
dominant period reflects the symmetry of the acceleration
norm between right and left strides.

III. RESULTS AND DISCUSSION

The first processing step was to epoch the recorded data
in order to isolate each stride. Then, within each stride, the
toe strike, toe-off and maximum acceleration at toe-off were
detected to extract the features. This epoching algorithm
requires one parameter - expressing the position of the stride
peak detection windows - to be tuned for PD patients.

According to the video analysis, the healthy volunteer had
a normal gait, without asymmetry or FoG. This observation
is confirmed by the feature profile, as presented in Table I.
No episodes of FoG are detected, the features values are
similar for both right and left feet except for the maximum
accelerations at heel strike and toe-off, that are larger for
the left side. The stride times and thus the stride lengths

Fig. 3. z-axis signals of the hallux sensor of right and left feet of the
parkinsonian patient. In thin line, the left sensor and in thick line, the right
sensor. The circles are represented when the heel hits the ground (detected
on the heel sensors) and the triangles when the toes leave the ground (toe-
off ). The double support time allows the detection of FoG events as both
feet are on the ground during FoG. In this figure, the freezing is present on
the right swing phase initiation.

TABLE I
GAIT FEATURES VALUES

Healthy Parkinson
gait right left gait right left

Gait vel. (m/s) 0.985 - - 0.232 - -
Step time (s) 0.616 - - 1.035 - -

variability (%) 2.389 - - 93.80 - -
Step freq. (Hz) 1.624 - - 1.234 - -
FoG (-) - 0 0 - 2 0
FoG time (s) - 0 0 - 4.775 0
Stride time (s) - 1.233 1.233 - 1.718 1.697

variability (%) - 1.734 2.136 - 11.13 13.08
Stride freq. (Hz) - 0.812 0.812 - 0.589 0.598
Stride length (m) - 1.214 1.214 - 0.399 0.394
Stance phase (%) - 55.44 55.57 - 51.42 66.59

variability (%) - 1.804 1.470 - 8.935 6.377
Swing phase (%) - 44.56 44.42 - 48.58 33.41

variability (%) - 2.245 1.840 - 9.457 12.71
Single supp. (%) - 44.29 44.56 - 34.19 49.24

variability (%) - 2.371 2.552 - 13.85 9.465
Double supp. (%) - 5.305 5.804 - 6.068 11.15

variability (%) - 15.84 16.31 - 44.01 26.91
A. heel strike (g) - 3.100 5.175 - 3.210 1.937

variability (%) - 10.69 26.79 - 24.75 19.96
A. toe-off (g) - 4.153 5.328 - 2.634 2.632

variability (%) - 20.72 15.82 - 18.18 18.16
Regularity (-) - 0.618 0.589 - 0.140 0.205
Symmetry (-) 0.858 - - 0.058 - -

are identical, expressing a balanced gait. The parkinsonian
patient showed an asymmetric FoG, on the right side. The
patient used a compensatory mechanism since its gait au-
tomaticity was deficient. The patient overstepped the right
movements to help initiate the gait. The left side movements
were only performed in order to maintain balance. The
feature profile leads to the same conclusions (Table I). The
gait is very slow and the FoG is only present on the right
side, as presented in Fig. 3. As the patient presents long
episodes of FoG, brief episodes are not accounted in the
FoG feature. These long episodes have been removed for the
stride-based features. The double support ratio is higher (11
%) for the right swing phase initiation, reflecting difficulties
to take off the right foot of the ground. On the contrary,
the double support ratio for the left swing phase initiation
is similar to those of the healthy volunteer, showing no
freezing on the left side. The stride times and lengths are
similar for both sides, reflecting the ability of the patient
to maintain a balanced gait. The stance/swing phase ratios
reflect the asymmetry of the gait. The larger right swing
phase ratio reflects the overstepped right movements. The
small left swing phase ratio reflects the fact that the left
movements are only performed to maintain balance. The
maximum acceleration at heel strike is larger on the right
side. On the contrary, the swing phase initiation accelerations
are similar for both feet. The maximum acceleration at heel
strike may be dependent of the subject’s weight and type
of shoes. This feature should thus be interpreted cautiously.
The stride regularity is quite small for both side. The very
low value of the symmetry feature further emphasizes the
fact that the gait is asymmetric. Except for accelerations, the
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feature variabilities are larger for the parkinsonian patient.
Preliminary analysis performed on a larger number of

individuals showed that parkinsonian patients have vari-
ous feature profiles depending on their disabilities. Patients
without asymmetry and FoG showed notwithstanding an
increased variability for several features.

IV. CONCLUSIONS AND FUTURE WORKS

One of the major disabilities in Parkinson’s disease
are gait disorders, characterized by a slow and shuffling
gait, and that can include FoG or gait asymmetries. The
daily used clinical scales are not well adapted for a full
characterization of these disabilities, on the contrary of
technologies such as visual marker-based systems, pressure
sensors or inertial sensors. Only the latter answers the
need for a usable tool in the daily clinical practice, that
maintains a functional gait. The new accelerometer-based
device proposed in this paper meets those requirements
and may allow a deeper quantification of gait asymmetries
and FoG than other commercial systems [9], as presented
for one healthy volunteer and one parkinsonian patient.
The quantification of gait asymmetry is a matter of interest
since it may be helpful for the increase of PD diagnosis
accuracy [5]. Detecting subtle episodes of FoG could
help in improving care of patients by adapting treatment
strategies in order to reduce the risk of falls. Moreover, the
stride epoching and the feature extraction method allow the
computation of features variability that could be usefull in
the detection of presymptomatic motor changes, e.g. among
PD relatives who have an increased risk of developing PD
[16].

A larger set of subjects is about to be formed to validate
the system and the extracted features with a state-of-the-
art 3D movement analysis system. Subjects’ gait will be
simultaneously recorded using the Locometrix system [17],
the new accelerometer-based device and the Codamotion
system [12], used as ground truth.

The set of extracted features will be expanded. Indeed,
the toe strike event detection has still to be improved for
certain parkinsonian patients. This detection can be difficult,
especially for patients who ”drag their feet”. Using the heel
strike and the toe strike events, a feature quantifying the
foot reception phase can be computed. Moreover, one of
the advantages of this new system is the FoG quantification.
However, even if the double support ratio may be a good
indicator of the difficulties to take off the feet of the ground,
which defines FoG, FoG detection can be improved. Time-
frequency analysis will be performed, as it is an appropriate
approach [6] to detect brief and subtle episodes of FoG.
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