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Abstract—This paper presents an adaptive least squares 

algorithm for estimating the power line interference in surface 

electromyography (sEMG) signals. The algorithm estimates 

the power line interference, without the need for a reference 

input. Power line interference can be removed by subtracting 

the estimate from the original sEMG signal. The algorithm is 

evaluated with simulated sEMG based on its ability to 

accurately estimate power line interference at different 

frequencies and at various signal-to-noise ratios. Power line 

estimates produced by the algorithm are accurate for signal-

to-noise ratios below 15 dB (SNR estimation error at 15 dB is 

14.7995 dB  1.6547 dB). 

I. INTRODUCTION 

URFACE electromyography (SEMG) is the non-invasive 

measurement of the electrical activity associated with 

the contraction of skeletal muscles. SEMG applications 

include detection of muscle fatigue, determining muscle 

fibre-type composition, determining motor unit recruitment 

patterns, and clinical neuromuscular assessment. 

Confidence in sEMG results is confined by signal 

contamination with various types of noise and/or 

distortions. 

CleanEMG is an ongoing project with researchers from 

Carleton University and the University of New Brunswick. 

The objective of CleanEMG is to develop an open source, 

user friendly software tool for automatic quantitative 

assessment of sEMG signal quality [1]. With such a tool, 

reliable sEMG could be acquired without requiring the 

presence of a trained EMG technician to ensure proper 

equipment setup for noise minimization. CleanEMG will be 

able to automatically make an assessment of signal quality 

and provide feedback in terms of the estimated levels of 

different types of noise. 

A significant source of noise in EMG which will be 

addressed as part of CleanEMG is power line interference. 

It has been shown that power line interference can 

compromise the analysis of EMG signals [2]-[4]. 

Traditionally, power line interference is removed from 

sEMG signals using a notch filter centered on the 
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contaminated frequency components (60 Hz in North 

America). A number of disadvantages exist with this 

approach. Firstly, the notch filter will remove all 

frequencies in the cutoff band and not just those due to 

power line interference. The removal of these frequencies 

can adversely affect measurements such as mean/median 

frequency in fatigue detection and spectral slope analysis 

[5]. Secondly, real notch filters are not ideal and will have 

finite roll-off on each side of the cutoff band which will 

cause distortion in those sEMG frequency components [6]. 

This is a serious problem for shorter signals due to their 

poor frequency resolution. Lastly, there exists variance in 

the power line interference frequency. A notch filter could 

miss the power line interference entirely [7]. 

Adaptive algorithms can be used to filter a reference 

input assumed to be correlated with the power line 

interference [8]. This reference input must either be a 

recorded signal, which is expensive in terms of memory, or 

a synthetic signal which presupposes a known power line 

frequency. 

In this paper, an adaptive algorithm is presented which 

estimates the unknown amplitude, phase, and frequency of 

the power line interference, with no need for a reference 

input. The power line interference can subsequently be 

removed from the sEMG by subtracting this noise estimate. 

The algorithm is evaluated in terms of its ability to 

accurately estimate the power line interference at different 

frequencies in simulated sEMG of varying signal-to-noise 

ratio (SNR). 

II. METHODS 

A. Least Squares Adaptive Algorithm 

An iterative least squares steepest descent algorithm 

adapted from [9] is used to estimate the parameters of the 

power line interference, which is assumed to consist of a 

single frequency component; that is, the power line 

interference is a sinusoid with an unknown amplitude, 

frequency, and phase. Such a sinusoid can expressed as a 

linear combination of a cosine and sine function as: 
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where â  and b̂  are the amplitudes of the in-phase and 
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quadrature components, and ̂  is the frequency. 

At iteration k of the least squares algorithm, the mean 

squared error function is defined as: 
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In (2), s  is the noisy sEMG signal. In (3), x  is the clean 

sEMG signal, m  is the power line noise, km̂  is the power 

line noise estimate, and N is the signal length. It can be 

shown that minimizing the mean squared error ( kE ) 

between s  and km̂ is equivalent to minimizing the mean 

squared error between m  and km̂   given that x  and km̂  

are uncorrelated. If x  and km̂  are uncorrelated, the noise 

estimate can at best estimate the noise and km̂  will 

converge to m . 

The mean squared error function in (2) and (3) is 

minimized using an iterative steepest descent algorithm in 

the frequency parameter space. The frequency is updated as 

specified by (4). 
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In (4), opth  can be determined using the linear least 

squares estimator since m̂  is linear in terms of â  and b̂  

as given in (4). The parameter μ is the learning rate. 
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A disadvantage of the iterative steepest descent approach 

is that it can converge on a nonoptimal local minimum if 

the search space is not properly confined. To mitigate this, 

we assume the frequency is in the range of 59.5 Hz to 60.5 

Hz. The initial frequency for the search was determined by 

minimizing the mean squared error defined by (3) using the 

least squares estimator in terms of â  and b̂ . For each 

frequency in the desired range at intervals of 0.001 Hz, (4) 

was used to calculated opth , km̂  was then calculated from 

(1) and kE from (3). Once the mean squared error, kE , is 

calculated for each initial frequency, the minimum can be 

located and the corresponding frequency is chosen as the 

starting point for the steepest descent algorithm. 

The algorithm terminates when the frequency step size is 

less than 10-7 Hz, or if this condition is not met after 10000 

iterations. The learning rate μ was initialized to 10-8 and 

was reduced by 10% whenever the frequency step changed 

direction. 

 

B. sEMG Simulation 

For this study, sEMG data are simulated by passing white 

Gaussian noise through a shaping filter [10]. The shaping 

filter transfer function is given in (5). 
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In (6), l  and h are parameters which adjust the shape 

of the EMG spectrum and K is the gain factor. Values of 30 

Hz and 60 Hz were chosen for l  and h , respectively 

(after multiplying by 2π rad/cycle) [11]. Typically, these 

shaping parameters are varied in time to support the 

nonstationarity of the EMG signal; however for simplicity 

we assume a short enough signal duration (less than 5 

seconds) such that stationarity can be reasonably assumed. 

The gain factor K was adjusted to normalize the power of 

the sEMG signal to 1. 

Power line interference is added to the sEMG signal by 

generating a sinusoid with a given amplitude and 

frequency; the phase is randomized using a uniform 

distribution in the range [-,]. The amplitude of the 

sinusoid is calculated based on the desired SNR. For the 

simulations, SNR is varied between -10 dB and +40 dB in 5 

dB increments. The frequency of the synthetic power line 

interference is varied between 59.5 Hz and 60.5 Hz at 0.25 

Hz increments.  

The simulated sEMG with added power line interference 

is generated with a signal length of 4096 samples and a 

sampling rate of 1 kHz (i.e., just over 4 seconds). Each SNR 

(-10 dB to +40 dB) and power line frequency (59.5 Hz to 

60.5 Hz) combination are simulated 1000 times. 

III. RESULTS 

In Fig. 1, we see a sample sEMG signal with 60.25 Hz 

power line interference and SNR of 10 dB. In Fig. 2, we see 

the same frequency spectrum of the resultant signal with 

estimated power line interference subtracted, and the 
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original synthetic sEMG before noise was introduced. We 

observe that the spectra in Fig. 2 around the 60.25 Hz 

region are nearly identical with the power line interference 

being removed. 

Fig. 3 is a plot of the estimated SNR as a function of the 

actual SNR. Ideally, the plot should have a linear one-to-

one relationship, however, we see the SNR estimate fall 

below the actual SNR for values above 15 dB; that is, the 

SNR is underestimated for high SNR values. The plots are 

almost identical for each power line frequency. 

 

 
Fig. 1. Frequency spectrum of sEMG with power line 

interference at 60.25 Hz (SNR = 10 dB). 

 

The error between the estimated power line frequency 

and the actual power line frequency was calculated for each 

of the 1000 iterations. This error was averaged over all 

iterations for each actual power line frequency. The 

frequency error is plotted as a function of the SNR in Fig. 4. 

We notice that for large noise power (SNR between -10 dB 

and 15 dB), the error in power line frequency estimate is 

small. For SNR above 15 dB, the power line frequency 

estimate is not as reliable, with the variance in the error 

noticeably larger. For high SNR sEMG signals (> 15 dB), 

the power line interference is small and there may exist 

larger sinusoidal components in the sEMG signal that the 

least squares adaptive algorithm can mistakenly identify as 

power line interference. 

 

 

 

 

 
Fig. 2. Frequency spectra of sEMG with power line 

estimate subtracted (top) and the original noiseless 

sEMG (bottom). Estimate was at 60.265 Hz and 11.7 dB. 

IV. DISCUSSION 

The least squares adaptive algorithm performed very well 

for an SNR of 15 dB and below. Once the SNR begins to 

increase beyond 15 dB, the frequency estimate of the 

algorithm becomes inaccurate. This is because the power 

line interference is small and the least squares adaptive 

algorithm may be falsely tracking sinusoidal components 

that are part of the sEMG signal. This hypothesis is 

supported by examining the error in the estimate of the 

power line interference frequency, which also becomes 

inaccurate for SNR values above 15 dB. The range of power 

line frequency (i.e., [59.5 Hz, 60.5 Hz]) is larger than what 

would be anticipated in reality. Narrowing this range may 

help mitigate the error in power line frequency estimate. 

At an SNR as high as 10 dB, we see a significant spike at 

the power line frequency in the sEMG spectrum (Fig. 1). 

The subtraction of the noise estimate from the noisy signal 

is compared to the ideal clean signal in Fig. 2. Although the 

signals are not identical, they are quite close and the 

estimate is a very reasonable approximation of the original 

signal. We see that a frequency component between 60 Hz 

and the power line frequency (60.25 Hz) was erroneously 

removed from the original signal. It is tempting to fault the 

algorithm for this, however we must note that the frequency 

resolution of the Fast Fourier Transform (FFT) is NFs /  

which in our case is 0.24 Hz and these discrete frequency 

intervals do not coincide with our chosen power line 

frequencies. Thus, the influence of the power line 

interference on the frequency spectrum will affect adjacent 

frequency components. The only way to avoid this is to 

increase the time duration of the signal and as the duration 

of an sEMG signal segment increases, the assumption of 

stationarity becomes less reasonable. 
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Fig. 3. Mean estimated SNR for each actual SNR for the 

noisy sEMG signal at various power line frequencies. 

Ideal case is shown for reference. Error bars are at plus 

or minus one standard deviation. 

 
Fig. 4. Mean frequency error for 5 different power line 

frequencies at various SNRs. Error bars are at plus or 

minus one standard deviation. 

 

It should also be mentioned that real power line 

interference includes the odd harmonics of the fundamental 

power line frequency. These harmonics are much lower in 

power and are typically inconsequential. This algorithm was 

designed to track a single frequency component, however it 

could easily be applied individually to the odd harmonics of 

the calculated power line frequency. 

Whenever an attempt is made to remove the power line 

interference, there will likely be distortion of the sEMG 

signal. When the amount of interference is large (i.e., low 

SNR), the tradeoff between reducing the effect of the 

interference and distorting the sEMG is justified. The 

tradeoff may not be justified, or even required, for low 

levels of interference (i.e., high SNR). This algorithm 

provides an accurate estimate of the SNR up to 15 dB. This 

SNR estimate can be used to decide whether or not any 

power line interference removal should be attempted or not. 

V. CONCLUSION 

The application of the adaptive least squares algorithm to 

quantify power line interference in sEMG produced reliable 

results for SNR below 15 dB. For sufficiently short sEMG 

signals such that the signal can be assumed to be stationary, 

this method facilitates the removal of power line 

interference with minimal distortion to the original signal 

and can do so in a timely manner. The method is not 

appropriate for signals with too few samples or signals with 

minimal power line interference. If the SNR is high, it is 

unlikely that the power line interference will have much of 

an impact on the signal and filtering may not be necessary. 

Otherwise, an adaptive least squares method can 

significantly improve sEMG signal quality when 

contaminated with power line interference. While the power 

line interference estimation method was presented here in 

the context of sEMG, this method would be just as 

applicable to other data collection setups (e.g., 

electrocardiograms and electroencephalograms). 
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