
  

 
 

Abstract— Continuous glucose monitoring (CGM) devices 
measure and record a patient’s subcutaneous glucose 
concentration as frequently as every minute for up to several 
days. When coupled with data-driven mathematical models, 
CGM data can be used for short-term prediction of glucose 
concentrations in diabetic patients. In this study, we present a 
real-time implementation of a previously developed offline 
data-driven algorithm. The implementation consists of a 
Kalman filter for real-time filtering of CGM data and a 
data-driven autoregressive model for prediction. Results based 
on CGM data from 3 different studies involving 34 type 1 and 2 
diabetic patients suggest that the proposed real-time approach 
can yield ~10-min-ahead predictions with clinically acceptable 
accuracy and, hence, could be useful as a tool for warning 
against impending glucose deregulation episodes. The results 
further support the feasibility of “universal” glucose prediction 
models, where an offline-developed model based on one 
individual’s data can be used to predict the glucose levels of any 
other individual in real time. 

I. INTRODUCTION 

ODERN continuous glucose monitoring (CGM) 
devices provide a minimally invasive mechanism for 

monitoring the glycemic state of a patient as frequently as 
every minute. However, the ability of such devices to monitor 
current glucose concentrations can provide alerts only when a 
interstitial glucose excursion is already underway (i.e., the 
glucose concentration may already be at an unacceptably high 
or low level) rather than alerting the patients of an impending 
glucose excursion so that a proactive therapy can be rendered. 

Recently, we demonstrated the feasibility of data-driven 
autoregressive (AR) models to predict the near-future glucose 
concentrations of type 1 diabetic patients using their recorded 
recent-history CGM data [1], where we offline-smoothed the 
CGM data of a patient, developed an AR model using a 
portion of the offline-smoothed data, and then predicted the 
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remaining portion of the smoothed data with the AR model. 
We found that, for a 30-min-ahead prediction horizon, the AR 
models yielded predictions with an average root mean 
squared error (RMSE) of 1.8 mg/dL and an average time lag 
of 0.2 min. More recently, we extended the aforementioned 
approach to type 2 diabetic patients as well [2]. Importantly, 
we found that a “universal” AR model could be developed 
based on the CGM data from one diabetic patient, and 
subsequently applied to predict subcutaneous glucose 
concentrations of other patients, without being affected by 
diabetes type, subject age, CGM device, and interindividual 
differences. However, in these two studies, the AR models 
were applied to predict CGM data whose entire time series 
had been previously (i.e., offline) smoothed. In real-time 
prediction, this is not possible, because the entire time-series 
data are not available a priori and only previous and current 
data values are known at any given time.  

In this report, we describe an algorithm for predicting 
subcutaneous glucose concentrations in real time. The 
proposed real-time prediction algorithm consisted of two 
components: a Kalman filter and an AR model. First, we 
filtered the raw CGM data in real time through the Kalman 
filter. Then, we predicted future glucose concentrations based 
on the real-time filtered CGM data using the AR model.  In 
addition, the linear AR formulation rendered analytic 
expressions for computing statistically based reliability 
measures of the predictions in the form of 95% prediction 
intervals (PIs). 

II. METHODS 

A. Study Population 

Table I shows the information of the three independent 
studies used in this investigation. Detailed information of the 
protocols is provided in Ref. 2. Briefly, the 3 studies included 
34 subjects with either type 1 or type 2 diabetes and using 
three different CGM devices: iSense, Guardian RT, and 
DexCom. In the iSense study, subjects were included if they 
were between 18 and 70 yr of age, had been diagnosed with 
type 1 diabetes and treated with insulin for at least 12 mo, and 
had glycated hemoglobin (HbA1c) >6.1%. In the Guardian 
study, subjects were included if they were between 3 and 7 yr 
old or between 12 and 18 yr old, had been diagnosed with 
type 1 diabetes for more than 1 yr, had been using an insulin 
pump, and had HbA1c ≤ 10.0%. In the DexCom study, 
subjects were included if they were older than 18 yr of age, 
had been diagnosed with type 2 diabetes and treated either 
with oral agents, basal insulin, or both for at least 3 mo, and 
had HbA1c between 7% and 12%.  
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We used the first 4,000 min of the recorded CGM data of 

each subject and down-sampled the data of the iSense study 
to 5-min sampling intervals so that every data set contained 
800 data points. We used the first 400 data points (or 2,000 
min) as training data for AR model development and the 
subsequent 2,000 min as testing data for assessing the 
real-time predictions. 

B. Offline Smoothing of the Training Data 

Because AR models capture the temporal autocorrelation 
in the time-series CGM data, the data need to be smoothed 
prior to model development. Otherwise, AR models fitted on 
raw CGM data yield trivial, random-walk models [1].  

Here, similar to our previous work [1-3], we offline 
smoothed the training data of each subject using the Tikhonov 
regularization approach, where the regularization parameter 
was chosen such that signals with period less 1 h were 
removed from raw CGM data. These offline-smoothed 
training data were used as the “noise-free” CGM data for AR 
model development.  

C. Real-time Filtering of the Testing Data 

In our previous studies [1,2], we offline smoothed the 
entire CGM data set (training and testing data). However, for 
real-time prediction, offline smoothing of the testing data is 
not possible because at a given time only previous and current 
data points are available. In this report, we filtered the testing 
data of each subject in real time using a Kalman filter to 
simulate the scenario of real-time predictions. The Kalman 
filter was formulated in the discrete-time domain, using an 
AR-model state-space representation, described as: 
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where )(~ ny denotes the noise-free CGM data at time n, )(
~

nY is 
the state vector, A is the m x m state transition matrix 
consisting of AR-model coefficients, bi, i = 1, 2,…, m, where 
m is the order of the AR model, W(n) is the process noise 
having white noise ε(n) with zero mean and variance σε

2, y(n) 
is the raw CGM data, H is the matrix that denotes the 
relationship between the state vector and the raw CGM data, 
and v(n) denotes white measurement noise with zero mean 

and variance σv
2. In this formulation, the raw CGM data y(n) 

are regarded as the measurements that contain noise v(n), and 
the noise-free CGM data )(~ ny are considered equivalent to the 
offline-smoothed CGM data, which need to be estimated by 
the Kalman filter in real time.  

At each discrete time n, the Kalman filter yields the optimal 
(in the minimum mean-squared-error sense) estimation of the 
state vector )(

~
nY through the following prediction and update 

formulation [4]: 
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where )(
~̂

nY  denotes the prior estimate, )(
~̂

nY denotes the 
optimal estimate of )(

~
nY , and K denotes the Kalman gain, 

which is determined by σε
2 and σv

2. Given )(
~̂

nY , the optimal 
estimate of the noise-free CGM data, at time n, is computed as

)(
~̂

)(~̂ nYHny  . 
In real-time prediction, outliers of the raw CGM data were 

corrected on the fly before being fed into the Kalman filter, 
i.e., if the difference between the current data value y(n) and 
the previous one y(n–1) was more than 4 mg/dL, we limited 
the rate of change of blood glucose to ± 4 mg/dL [5]. 

As represented in Eqs. (1)-(4), the proposed Kalman filter 
smoothing approach requires two components: an AR model 
that is fitted on the offline-smoothed CGM data and the 
corresponding Kalman filter parameters σε

2 and σv
2. These 

two components were obtained after the completion of AR 
model development using the training data, as described 
below. 

D. AR Modeling and Prediction 

The AR model was fitted on the offline-smoothed training 
data. Equation (1) provides the state-space representation of 
the AR model, which is equivalent to the conventional 
AR-model expression, that is, 
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The AR coefficients bi describe the temporal correlation 
between the current value )(~ ny  and each of the previous 
values )(~ iny  , i = 1, 2,…, m, and ε(n) denotes white noise 
[6]. 

Previously, we calculated the coefficients bi using 
regularized least squares to obtain a regularized AR model 
such that the model was able to yield stable predictions for the 
scenario where white noise was added to the offline smoothed 
testing data [1]. However, in real-time situations, such a 
scenario does not exist because CGM data noise is filtered out 
by the Kalman filter in real time before making AR-model 
predictions. Therefore, here we calculated the coefficients bi 
using ordinary least squares. 

The order of the AR model m was determined using the 
Bayesian Information Criterion (BIC), which balances the 
goodness of the model fit with model complexity [6]. 

Using the optimal estimates of the noise-free data and the 

TABLE I 
SUMMARY INFORMATION OF THE THREE STUDIES 

 

 iSense Guardian RT DexCom 
No. of Subjects 9 18 7 
Diabetes Type 1 1 2 
Sampling Interval (min) 1 5 5 
Collection Time (days) 5 6 56 
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AR coefficients, the one-step-ahead AR prediction can be 
calculated as follows:  

                        ,)(~̂)1(~̂
1

0






m

i
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where )1(~̂ ny denotes the predicted value for ).1(~ ny  
Equation (6) can also be used to make k-step-ahead 
predictions, )(~̂ kny  , for k >1, by iteratively substituting the 
(k–1) predicted values for the corresponding (k–1) 
yet-unknown data values. 

In addition, the linear AR formulation provides the 
following analytic expression for computing PIs at time step 
n+k [6]: 
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where ψj are the AR coefficients in the infinite weighted sum 
expression, which can be derived from bi [6], and the 
coefficient 1.96 corresponds to 95% limits. The interval

)( knPI 

 

provides the statistical range within which the 
k-step-ahead raw CGM data point )( kny  shall fall 95% of 
the time. 

The Kalman filter parameters σε
2 and σv

2 were estimated 
using the offline-smoothed training data. Using the trained 
AR model, we set σε

2 to be the variance of the one-step-ahead 
prediction error (applied on the offline-smoothed training 
data) and σv

2 to be the variance of the residual error between 
the raw and offline-smoothed training data.  

III. RESULTS 

A. AR Model and Kalman Filter Parameters 

We applied the BIC to the offline-smoothed training data 
for each of the 34 subjects and found that the optimal AR 
order was 6 for 20 subjects, 7 for 12 subjects, and 8 for two 
subjects. Therefore, we set the AR order as 6. We then fitted 
such models using the offline-smoothed training data, to 
obtain 34 AR(6) models and 34 pairs of Kalman filter 
parameters σε

2 and σv
2. Table II shows the mean and standard 

deviation (SD) of the six model coefficients bi, i = 1, 2,…, 6, 
and the ratio σv

2/σε
2.  

 

 

B. Real-Time Prediction  

We used the testing data to assess the (simulated) real-time 
predictive performance of the 34 AR models for 2 prediction 
horizons: 10- and 20-min-ahead. The model’s performance 
was assessed based on RMSE and time lag. First, we offline 
smoothed the testing data using the same Tikhonov 
regularization technique as used to smooth the training data. 

Then, we used the smoothed testing data as the reference 
against which we computed the RMSE and time lag of the 
predictions, where the time lag was calculated based on the 
cross-correlation between the predictions and the reference. 
Both RMSE and time lag were computed from 2,250 to 4,000 
min, where were excluded the initial (2,000-2,250 min) 
transient response of the Kalman filtering.  

To evaluate the performance of each of the 34 individual 
models, we used the AR(6) model and the corresponding σε

2 
and σv

2 obtained from the training data of the corresponding 
subject (individualized model and parameters). Figure 1 
shows the 10- and 20-min-ahead prediction results for a 
typical subject, Guardian subject #9. As shown in Fig. 1, as 
the prediction horizon increased, the RMSE, time lag, and PIs 
increased. The time lag increased to ~10 min for the 
20-min-ahead prediction, indicating that the effective horizon 
for real-time predictions is ~10 min.  

To verify the portability of the AR(6) models and as the 
impact of the Kalman filter parameters on the predictions, we 
conducted a leave-one-out (LOO) prediction procedure,  
where we predicted the testing data of each of the 34 subjects 
using the averaged AR model coefficients and the averaged 
Kalman filter parameters based on the training data of the 
other 33 subjects. Figure 2 shows the comparison of the 
10-min-ahead predictions for Guardian subject #9 using the 
LOO AR model and Kalman filter parameters with those 
based on individualized model and parameters for that 
subject. We found the results to be essentially 

TABLE II 
MEAN AND STANDARD DEVIATION (SD) OF THE AUTOREGRESSIVE (AR) 

COEFFICIENTS AND THE RATIO σv
2/ σε

2 FOR THE 34 CONTINUOUS GLUCOSE 

MONITORING (CGM) SIGNALS 
 
 

 AR Coefficients 
σv

2
/σε

2
  b1 b2 b3 b4 b5 b6 

Mean 4.96 -10.63 12.62 -8.78 3.39 -0.57 2634.62 
SD 0.29 1.12 2.09 1.88 0.87 0.17 455.02 

 

Fig. 1.  Simulated real-time prediction for Guardian subject #9, based on the 
subject’s individualized autoregressive (AR) model and parameters σε

2 and 
σv

2. A: 10-min-ahead prediction [root mean squared error (RMSE) = 5.22 
mg/dL and delay = 0 min. B: 20-min-ahead prediction (RMSE = 8.94 mg/dL 
and delay = 10 min). CGM, continuous glucose monitoring. 
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indistinguishable. 
Table III shows the overall results of the 10- and 

20-min-ahead predictions using individualized and LOO AR 
models and Kalman filter parameters for the 34 subjects. The 
results in Table III show that the average RMSE of the 
predictions using individualized and LOO AR models and 
Kalman filter parameters were arguably close. The entries in 
parentheses show the average prediction RMSE during the 
hypoglycemic events as defined in [2]. Furthermore, when we 
performed pair-wise comparisons of the RMSEs of the 
predictions generated by the two approaches using a 
paired-sample t-test [7], we found that, at the 5% significance 
level, the results were statistically indistinguishable for both 
the 10- and 20-min-ahead predictions. 

 

IV. DISCUSSION AND CONCLUSIONS 

Using the proposed Kalman filter/AR model approach, we 
were able to predict CGM data 10-min-ahead in real time 
with an average time lag of 2.5 min and an average RMSE of 
8.97 mg/dL, which is ~6% of the mean value of a CGM data 
(the averaged mean value over the CGM data of the 34 
subjects is 159.06 mg/dL). In addition, the proposed approach 
also provided statistically based PIs, which provide a measure 
of reliability of the model predictions. Using the Clarke error 
grid analysis [8] based on the predictions and the reference 
data, we noted that the simulated real-time predictions were 
clinically acceptable (98.6% in zone A and 1.4% in zone B, 
calculated for the predictions using individualized AR model 
and Kalman filter parameters; plots are not shown). However, 
the RMSE was ~5 times larger than those of the offline 
predictions achieved in our previous work [1], and the 

average prediction time lag increased from 0.2 to 2.5 min.  
The degraded performance was caused by the so-called 

“end effect” observed in real-time filtering [6]. In real time, 
the filter can only use data up to the current discrete time n to 
filter the data at n, as opposed to offline, where the data 
beyond time n are available to improve the smoothing at time 
n. The end effect, which is particularly problematic in 
predicting oscillatory data, creates special and unique 
challenges for predictive algorithms, as the most recent 
samples, which carry the majority of the predictive 
information, cannot be properly filtered. The end effect may 
be alleviated by “borrowing” data from the near future, but 
that may not necessarily improve the predictive performance 
because borrowing data causes an effective increase in the 
prediction horizon.   

The LOO simulation results support our previous 
observations regarding the universality of AR-based 
predictive models [2]. As in the offline case, the penalty for 
developing one AR model (based on one individual or 
averaged over a group of individuals) and applying it for the 
real-time prediction of glucose levels of an unseen individual 
is arguably very small. For long-term use of CGM devices, 
the variance of the measurement noise, σv

2, may change with 
time and its value may need to be updated. In this case, an 
adaptive Kalman filter may be used, where σv

2 is estimated in 
each iteration step of the Kalman filtering [4]. The 
corroboration of model universality for real-time predictions 
has important practical implications, as it provides direct 
support for the incorporation of predictive models with CGM 
devices in the development of a shrink-wrapped system. 
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TABLE III 

PREDICTIVE PERFORMANCE (AVERAGED OVER THE 34 CGM SUBJECTS) 
 

 
Individualized AR(6) and  

Parameters σε
2 and σv

2 
LOO AR(6) and 

Parameters σε
2 and σv

2 
Prediction  
Horizon 

(min) 

RMSE 
(mg/dL) 

Lag 
(min) 

RMSE 
(mg/dL) 

Lag 
(min) 

10 8.97 (9.93) 2.50 8.97 (12.97) 1.76 
20  16.06 (13.46) 9.26 15.69 (15.32) 9.56 

Fig. 2.  10-min-head simulated real-time predictions for Guardian #9. A
comparison of the individualized AR model and parameters σε

2 and σv
2 versus

the leave-one-out (LOO) AR model and parameters is shown. Individual case:
RMSE = 5.22 mg/dL and delay = 0 min; LOO case: RMSE = 4.70 mg/dL and
delay = 0 min. 
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