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Abstract— In this paper we discuss an efficient methodology 

for the characterization of Microelectrode Recordings (MER) 

obtained during deep brain stimulation surgery for Parkinson’s 

disease using Support Vector Machines and present the results 

of a preliminary study. The methodology is based in two 

algorithms: (1) an algorithm extracts multiple computational 

features from the microelectrode neurophysiology, and (2) 

integrates them in the support vector machines algorithm for 

classification. It has been applied to the problem of the 

recognition of subcortical structures: thalamus nucleus, zona 

incerta, subthalamic nucleus and substantia nigra. The SVM 

(support vector machines) algorithm performed quite well 

achieving 99.4% correct classification. In conclusion, the use of 

a computer-based system, like the one described in this paper, 

is intended to avoid human subjectivity in the localization of 

the subcortical structures and mainly the subthalamic nucleus 

(STN) for neurostimulation. 

I. INTRODUCTION 

ARKINSON’S disease (PD) is caused by a depletion of 

dopamine in the Basal Ganglia region of the brain. PD is 

most commonly treated by taking L-dopa medication 

that restores the dopamine levels. Microelectrode guided 

neurosurgery can also be used for treating PD in severe 

cases or when medication does not work. These surgical 

procedures include a pallidotomy or a Deep Brain 

Stimulation (DBS). During a pallidotomy a lesion is made in 

the basal ganglia, while in a DBS a lead is implanted to 

stimulate the neuronal cells in the Basal Ganglia [1]. 

Surgical approaches to the treatment of Parkinson’s  

disease (PD) have been developed primarily in response to 

the failure of medical therapies to provide long-term relief 

from the disabling motor symptoms of the disease. Refined 

microelectrode recording (MER) techniques allow more 

detailed physiologic mapping of the subthalamic structures 

in the operating room, providing more detailed knowledge of 

electrode location prior to neuroablation or insertion of an 
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implanted deep brain-stimulating lead. The introduction of 

long-term deep brain stimulation (DBS) as an alternative to 

irreversible neuroablative procedures may enhance the 

safety of these procedures while maintaining therapeutic 

efficacy.         

 MER signal analysis is largely an art developed and 

practiced by skilled surgeons who view and listen to the 

extracellular electrical activity of neurons along a linear 

trajectory towards the nominal target region. Currently the 

interpretation of MER signals is primarily performed by the 

surgeon based on the properties of the MER signals 

determined by examining the time domain behavior of the 

signal on oscilloscopes and listening to the signal through 

conventional speakers. Since the neural activity varies from 

one structure to another within the brain, the possibility of 

targeting errors to DBS necessitates the use of some form of 

intraoperative neurophysiologic monitoring to confirm the 

correct targeting during surgery [2]-[3].  

The purpose of the development of numerical techniques 

for MER processing is to assist the surgical team in 

determining the optimal location of the lesion or DBS lead 

[4]-[6]. 

Support Vector Machines (SVM) are powerful automatic 

learning structures, based on the statistical theory of 

learning, capable of resolving classification, regression and 

estimation problems. They have been the aim of much 

research in recent years. The method was proposed by V. 

Vapnik [7] in the late seventies for solving pattern 

recognition problems. In the 1990s, use of the method 

became widespread [8] and it is currently the object of great 

interest. Support Vector Machines offer improvements over 

traditional learning methods: the size of the network is not 

established from the outset and the maximum generalization 

level is guaranteed mathematically. 

This work presents supervised machine learning to 

integrate multiples features. Specifically, we use 6 

mathematical features [6], each measuring different 

characteristics of the signals from the microelectrode 

recordings, in order to quantify changes in neural activity 

from subcortical structures, and that could be used in DBS. 

II. MATERIALS AND METHODS 

A. Data Base 

Intra-operative acquisitions were made on unmedicated 

awake patients that underwent DBS implantation. Four 

patients aging 556 (4 male and 1 female) who signed 

informed consent participated.  Microelectrode recordings 

were made using the ISIS MER (System Innomed Medical 

GmbH). Visualization of neural data started 10 mm above 
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the target data. Every 1 mm one new site was created if the 

distance between the microelectrode and the target point was 

larger than 3 mm. At distances less than 3 mm, sites were 

created every 0.5 mm. MER signals were labeled by 

specialists in neurosurgery and neurophysiology. At each 

site the acquisition lasted 2s with sampling frequency of 25 

kHz and 16-bit of resolution. In total, there are 52 neural 

recordings divided in four classes: 13 signals from thalamus 

nucleus, 13 signals from subthalamic nucleus, 13 signals 

from substantia nigra, and 13 from zona incerta. These 

procedures were performed by the Institute of Parkinson and 

Epilepsy of the Eje Cafetero of Pereira, Colombia. Figures 1, 

2, 3, and 4 show MER for thalamus, zona incerta, 

subthalamic nucleus and substantia nigra, respectively. 

 

 

 

Fig. 1. MER-Thalamus. 

 

 

Fig. 2. MER-Zona Incerta. 

 

 

Fig. 3. MER-Subthalamic Nucleus.  

 

 

Fig. 4. MER-Substantia Nigra. 

 

B. Computational Features 

The following is a brief description of each feature and 

the corresponding formula for its calculation [6]. In the 

following, X is the data epoch vector of length N. 

 

Curve Length 

This feature is used to capture the stability of the values of 

a signal. If the value of this feature is low in an interval, 

provided by the user, the signal is stable, if not, the signal is 

unstable. Equation (1) defines the calculation of this 

measure: 
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where each   ix  is a sample of the dataset  1 2, ,..., NX x x x . 

Threshold 

The determination of the threshold   is based on the 

calculation of the deviation of the data to capture how the 

data in a window of size  N  are scattered. The threshold is 

determined by: 
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where     it is the average of the dataset. 

Peaks 

The number of peaks whose value is positive is 

determined by: 
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Root mean square 

Defined as the square root of the average of the sum of the 

squares of the signal. The root mean square value is 

determined by:  
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Average of nonlinear energy 
The average of the non-linear energy is determined by: 
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Zero crossings 

The numbers of zero crossings  k  for one signal is 

determined by: 
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C. Support Vector Machines 

The Support Vector Machines (SVM) approach is a novel 

algorithm for data classification and regression. It was 

introduced by Vapnik in 1995 [7] and is clearly connected 

with statistical learning theory [8]. The SVM is an 

estimation algorithm that separates data in two classes, but 

since all classification problems can be restricted to 

consideration of the two-class classification problem without 

loss of generality, SVM can be applied in classification 

7950



  

problems in general. Basically, SVM only use information 

(examples) within the decision borders (called support 

vectors) and, by means of quadratic programming (QP), they 

attempt to induce linear or hyperplane separators which 

maximize the minimum distance between classes. In order to 

process non-linear ratios, SVM uses kernel functions to 

project the information in spaces of greater dimensionality 

and then transform them into linearly separable classes (Fig. 

5). The SVM algorithm is a learning machine, therefore it is 

based on training, testing and performance evaluation, which 

are common steps in every learning procedure. Training 

involves optimization of a convex cost function where there 

are no local minima to complicate the learning process. 

Testing is based on the model evaluation using the support 

vectors to classify a test dataset. Performance is based on 

error rate determination as test set data size tends to infinity. 

  

 
 

Fig. 5.  Example of instances projection from original space (2D) to a 
greater dimension space (3D) in order to linearly separate the classes. 

    

D. Computational Implementation 

As mentioned when describing the database, each 

recording was acquired for 2 seconds at 24 KHz sampling 

frequency, which leads to each recording having 48,000 

samples. Considering a trajectory of 13 records for each of 

the subcortical structures, the final trajectory is made up of 

52 recording and has a total of 2,496,000 samples. Then the 

final trajectory is divided into consecutive windows of 4,992 

samples and for each of these windows we determined the 

six computational features (statistical indexes), obtaining a 

total of 500 instances (patterns) per feature. This is presented 

in matrix form follows:  

 
Fig. 6. Data matrix X. 

where   500n  instances y   6p   variables or computational 

features. 

The data matrix is assembled so that the first 125 instances 

correspond to the thalamus nucleus, the second 125 

instances correspond to the zona incerta, the third 125 

correspond to the subthalamic nucleus and finally the last 

125 instances correspond to the substantia nigra. 

Statistical indexes or computational features of this work 

were scheduled in the Scilab 5.3.0 programming language 

and used with the package Weka 3.7 algorithm SMO [9] to 

perform the classification using SVM.  

III. RESULTS 

Gaussian and polynomial kernels, with different 

parameter values, were used in order to obtain the best SVM 

model. The best model was the one which reached the 

highest value of Kappa statistic K using n-fold cross 

validation.  

n-fold cross validation methodology allows us to obtain 

realistic errors using the complete database. Cross-validation 

consists of dividing the initial database into n subsets and 

selecting n-1 subsets to create the model. The subset not 

used in the process is used to calculate a partial sample error. 

This procedure is repeated n times, each time using a 

different test subset. Finally, the error is calculated by the 

arithmetic mean of the n partial samples errors. In this work, 

n=10. 

The Kappa statistic K is one of the most widely-used 

parameters. This coefficient determines the degree of 

agreement between categorical variables. It is a more robust 

parameter than the percentage of correctly classified 

examples (Precision) since K also takes into account those 

cases in which agreement occurs by chance. Thus, a K value 

of 1.0 represents a statistically perfect model while K=0 is 

the value expected for a model obtained by chance. 

According to some authors [10], K can be considered 

excellent for values greater than 0.75, good between 0.40 

and 0.75 and poor for values below 0.40. 

Other parameters were used to evaluate the models 

prediction capacity. Precision is one of these parameters, 

defined as the proportion of examples correctly classified 

divided by all the elements that were classified for this class. 

Recall is defined as the proportion of examples correctly 

classified divided by all elements of this class. F-Measure is 

the harmonic mean of Precision and Recall. Values of these 

parameters close to one indicate good accuracy in the 

predictions for each class.  

In order to obtain the best model, different values of the 

complexity parameter C were tested with C = 10
k
 where k 

values were from –3 to 3 with a step of 0.2 (31 values). 

Also, different values of the exponent (e) for the polynomial 

kernel and gamma (g) for the Gaussian kernel were used. In 

particular, e values were 1, 2 and 3, and g values were 0.005, 

0.01, 0.02, 0.03, 0.05 and 0.1. Therefore, the number of 

models trained with polynomial kernel was ninety three 

(           ) and with Gaussian kernel was one 
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hundred eighty six (            ). 

The results of the best model obtained with polynomial 

kernel, C = 10.0 and e = 1 are shown in Figure 6. In this 

figure is possible to observe that the SVM model was able to 

classify correctly 497 (99.4%) from a total of 500 instances. 

Parameters like Precision or Recall, with values over 0.99 

for the four classes (thalamus nucleus, zona incerta, 

subthalamic nucleus and substantia nigra), would be 

considered excellent. Also, the ROC-Areas values were very 

high. Finally, in the Confusion Matrix we can observe that 

only three cases were not classified correctly and according 

to K, the best model obtained was excellent        (K = 0.992). 

IV. CONCLUSION 

This work presented the results of a preliminary study 

making use of two methodologies for the characterization of 

subcorticals structures from Parkinson’s patients. 

The results obtained show how the computational features 

applied in this work a MER from Parkinson’s patients are 

able to extract, quantify and differentiate the information 

contained of the neural activity between the subcortical 

structures.  

After obtaining the computational features for each 

subcortical structures, and using them on the SVM algorithm 

for classification, the results showed that SVM was be able 

to classify correctly 497 (99.4%) from the 500 instances. 

Finally, various parameters to evaluate the prediction 

capacity of the model were obtained, indicating good 

accuracy in the predictions for each subcortical structure 

(class). 

    Since the neural activity varies from one structure to 

another within the brain, the possibility of targeting errors to 

DBS necessitates the use of some form of intraoperative 

neurophysiologic monitoring to confirm the correct targeting 

during surgery, so that the use of methodologies from data 

mining like the one presented in this work could be used in 

the process of localization of the subcortical structures and 

mainly the subthalamic nucleus (STN) for neurostimulation. 
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Fig. 6. 10-folds cross-validation results obtained with the best SVM model. 
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