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Abstract— The EEG signal is very often contaminated by
electrical activity external to the brain. These artefacts make
the accurate detection of epileptiform activity more difficult. A
scheme developed to improve the detection of these artefacts
(and hence epileptiform event detection) is introduced. A
structure of parallel Support Vector Machine classifiers is
assembled, one classifier tuned to perform the identification
of epileptiform activity, the remainder trained for the detection
of ocular and movement-related artefacts. This strategy enables
an absolute reduction in false detection rate of 21.6% with the
constraint of ensuring all epileptic events are recognized. Such
a scheme is desirable given that sections of data which are
heavily contaminated with artefact need not be excluded from
analysis.

I. INTRODUCTION

Electroencephalography (EEG) recordings are a well-

established tool in the diagnosis and monitoring of epilepsy.

During routine EEG, the diagnosis of epilepsy is dependant

upon the detection of abnormal cerebral activity [1]. These

abnormal waveforms, primarily consisting of spike and sharp

wave activity, will typically have durations much less than

one second, and while they may not in themselves constitute

a seizure, their presence alone in the EEG indicates that the

patient may very well be prone to epilepsy.

Signals recorded from the scalp are frequently contami-

nated by waveforms that are extracerebral in origin. These

artefacts, by obscuring the underlying EEG activity dur-

ing recording, can interfere with the interpretation of the

recorded epileptiform activity. In automatic epileptiform ac-

tivity detection, the presence of artefacts may lead to falsely

interpreting a section of artefactual EEG as epileptiform.

Furthermore, the presence of artefacts in training an epilep-

tiform activity detection classifier, may negatively affect the

performance of the classifier [2], [3].

Ocular artefacts are the most prevalent artefact found in

most EEG recordings. Previous work has shown that ocular

artefacts are a major contributing factor to the inaccurate

classification of epileptiform activity [4]. Their amplitude

can be several times larger than brain scalp potentials, thus

seriously interfering with the EEG recording. As the eyeball

moves, the potential difference that exists between the cornea
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and retina changes, producing the electrooculographic (EOG)

signal. This ocular artefact signal propagates across the scalp,

rapidly diminishing with distance travelled from the eyes.

Head movements can introduce a wide range of non-

cerebral electrical activity into the EEG. Typically, these

movements result in contamination in the form of some

combination of muscle (EMG), electrode pop and movement

artefacts. These component artefact signals display a wide

range of characteristics. In contrast to ocular-related activity,

muscle artefacts are predominantly high frequency signals,

and can range from low to high amplitude [5],[6].

In many clinical EEG trials, contamination by artefacts

is minimized by controlling the test situation to limit move-

ment. In an ambulatory setting this is both unrealistic, and in

cases such as diagnosing epilepsy, may even be undesirable.

An ambulatory epileptiform activity detection system is thus

faced with the twin problems of accurately detecting the

short-duration epileptiform events while rejecting sections of

EEG which are contaminated by artefacts.

Artefact detection/removal techniques can generally be

split into two separate categories: rule-based techniques

and classifier-based methods. The epileptic seizure detection

system implemented by Hunyadi et al. [7] relies on mim-

icking the approach taken by the neurologist when trying

to determine if an EEG segment contains seizure or not.

To improve the performance of the system, a number of

thresholding techniques are implemented to take into account

the presence of movement and ocular artefacts. The addition

of these enables the system to achieve a higher sensitivity of

84.4% while at the same time reducing the number of false

detections to 0.24 FD/h.

In contrast to rule-based methods, classifier-based systems

maintain continuous pseudo-probabilistic outputs. This leads

to the advantage of being able to choose a threshold, tai-

loring the system to a specific application. For example, if

the classifier is implemented in such a way that the false

detection rate needs to be minimised while maintaining 100%

of good detections, then the threshold may be set to achieve

this. Independent component analysis is used by Krishnaveni

et al. [8] to obtain each of the independent sources of the

EEG signal. These components are then classified as being

either artefact component or neural component using a neural

network classifier. A similar method is employed in the work

of Shoker et al. [9]. A Blind Source Separation algorithm is

used to separate the EEG into its constituent components,

before a Support Vector Machine (SVM) classifier is trained

to be able to differentiate eye blink from normal EEG

components.
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TABLE I

DATA CHARACTERISTICS FOR EACH RECORD

Patient Record
Length (s)

No. Ab-
normal
Events

Total Event
Duration (s)

Mean Event
Duration (s)

No. Ocular
Artefacts

Total
Duration

Mean
Duration

No.
Movement
Artefacts

Total
Duration

Mean
Duration

1 953 2 0.8 0.4 5 3.864 0.7728 0 0 0

2 1168 1 0.4 0.4 5 4.895 0.979 3 10.5 3.5

3 2736 5 3.6 0.72 0 0 0 1 14.5 14.5

4 3122 2 0.7 0.35 5 7.265 1.453 0 0 0

5 1219 13 18.2 1.4 5 5.027 1.0054 1 2 2

6 1213 4 4.8 1.2 5 7.043 1.4086 0 0 0

7 1221 14 29.8 2.129 5 6.484 1.2968 3 14.7 4.9

8 1200 1 3.9 3.9 5 4.359 0.8718 6 37.8 6.3

Mean 1604 - - 1.312 - - 0.9734 - - 3.9

Total 12832 42 62.2 - 35 38.937 - 14 79.5 -

Unlike existing seizure detection methods, which gener-

ally implement any artefact removal/detection steps prior

to epileptic seizure detection, this study presents a system

whereby artefact identification takes place in parallel with the

main detector. It is envisaged that this design can be used

in conjunction with the REACT (Real-time EEG Analysis

for Event Detection) technology to improve false detection

rates. REACT is an ambulatory, hardware implementation

that performs real-time seizure detection [10], [11] in adults.

II. METHODOLOGY

A. Data Collection

The data set used in this study consists of multichannel

EEG recordings obtained from 8 patients, all suffering from

idiopathic generalised epilepsy. The data set was acquired

through the Department of Neurophysiology at Cork Univer-

sity Hospital, using the 10-20 system of electrode placement,

from patients who were undergoing routine EEG tests. A

NicoletOne clinical EEG machine was used for acquisition

of the data. It is sampled at 250 Hz and analysed using a

16 channel bipolar montage. A total of 42 abnormal events

(consisting of single focal sharp wave and spike and slow

wave activity) are annotated on a per-channel basis in this

data set.

Examples of ocular and movement artefact are also ob-

tained from this same data set. The ocular artefact data

consists of 35 expert-annotated events with a total duration of

38.9 seconds, recorded at the 4 frontal channels. The move-

ment artefact data consists of 14 expert-annotated events

of duration 79.5 seconds, taken from all channels. Table I

provides more detailed information on this data.

B. General Detection System Structure

The template for the detection systems implemented in

this study was originally designed for use in the detection

of neonatal seizures [10]. It consists of four main stages, as

can be observed in Fig. 1. The following paragraphs explain

in more detail what is involved in each of these stages.

1) Preprocessing: A 50 Hz notch filter was initially

applied to the raw EEG signal to remove contamination from

electrical mains. This was followed by a process of breaking

the EEG signal into overlapping epochs (of length 1s and an

epoch shift of 0.1s) for analysis purposes.

2) Feature Extraction: A total of 55 features were ex-

tracted from the preprocessed EEG signal. These features

encompass the time, frequency and information theory do-

mains. The complete list of these may be found in the work

of Kelleher et. al [4].

3) Classification: A two-class Gaussian kernel SVM [12]

is implemented in this study. To begin with, the training

data is normalised, by subtracting the mean and dividing by

the standard deviation, to ensure that all features will have

equal significance when training the model. The normalising

template obtained is then also applied to the testing data.

Five-fold cross validation on the training data is completed

to find the optimum kernel parameter and generalisation

parameter. Once these have been found, they are used to

train the final model on all the training data.

4) Postprocessing: A sigmoid function is applied to con-

vert the output of the SVM classifier to a posterior proba-

bility [13]. This is followed by the application of a moving

average filter to each epoch of every channel, it’s purpose

being to filter out random noise, thus reducing the number

of false alarms reported by the system.

C. Constructed Detectors

There are three separate detectors incorporated into this

system as indicated in Fig. 1. All classifiers are based on the

structure outlined in Section II-B.

The first classifier, henceforth referred to as the baseline

detector, differentiates between epileptiform activity and nor-

mal background EEG. This normal EEG also includes non-

cerebral (artefact) activity. The second and third detectors

are referred to as the ocular detector and the movement

detector, respectively, their purpose being to identify artefact

contaminated epochs which have been mistakenly identified

as abnormal by the baseline detector. Two artefact detectors

were created independently (as opposed to having a detector

trained on both artefact types treated as one class, and normal

EEG as the second class) due to the differences between the

dynamics of the two artefact types, as outlined previously in

Section I. With the use of a sigmoid function, for all three

detectors a probability of 1 represents epileptiform activity,

while 0 represents normal or artefact activity.
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Fig. 1. The combination of decision vectors from baseline system and additional artefact detectors

D. Classifier Combination

Following the application of the sigmoid function and the

moving average filter to the classifier output, a threshold is

applied to this probability to obtain a binary decision vector.

This threshold value is chosen to obtain a good detection rate

of 100% whilst maintaining as low a false detection rate as

possible. To ensure a degree of patient independence, the

highest threshold found across the eight patients that gave

a Good Detection Rate (GDR) of 100%, and minimised the

False Detection Rate (FDR) , was then applied to all patients.

This process of choosing a threshold is completed not only

for the baseline classifier, but also for the two additional

artefact detectors.

All epochs from the main epileptiform classifier that

are flagged by the detector as epileptiform in origin are

combined with their corresponding epochs from the artefact

classifier that are also marked epileptiform by the detection

system. This fusion is performed by means of a logical

AND operation (if 1 exists in both decisions output by

the epileptiform classifier and the artefact detector, then the

result of the combination of the two decision vectors will

also be a 1). The next stage in this process is the summation

of the channels to obtain a single decision for the presence

or otherwise of an epileptiform event in the current epoch (if

an event is detected in one or more channels then the current

epoch is labelled as having a detection). Four different

configurations are implemented, as indicated in Fig. 2. It

is important to note that the configurations containing the

ocular detector fuse only the four frontal channels that have

been annotated for ocular-related activity; all other channels

from the baseline classifier are left as they are. On the other

hand, the configurations involving the movement artefact

detector make use of all 16 channels during the combination

step. Fig. 1 provides an illustration of the classifier fusion

process. The results of the combination process are presented

in Section III.

E. Metrics and Performance Assessment

The GDR is an event-based metric, defined as the percent-

age of abnormal events correctly detected by the system. For

example, if the classification system flags an event between

the start and end of an expert labelled event, then a good

detection is said to have taken place. The FDR is an epoch-

based metric. It is a measure of the number of epochs which
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Detection
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Fig. 2. Overview of all configurations compared. Best FDR achieved when
both ocular and movement artefact detectors combined with the base system

are incorrectly classed as a detection by the classification

system. If the strict condition is set that a perfect GDR must

be maintained, then the FDR will as a consequence be high.

However, if this requirement is relaxed, then the FDR will

decrease. The use of the false detections per hour (FD/h)

metric, which is an event-based metric, can potentially lead

to a misreading of the system performance. When the addi-

tional artefact detectors are implemented in parallel with the

baseline detector, the FD/h may increase. This occurs when

a false detection, as identified by the baseline detector, is

broken up into several independent events of shorter duration

with the addition of the artefact detectors. For this reason,

the FDR metric was reported instead.

An N-fold cross-validation system, where seven of the

patients are used in training and the remaining patient used as

the test data set, was employed to evaluate the performance

of the system.

III. RESULTS AND DISCUSSION

As has been mentioned in the introduction, in contrast

to rule-based methods, the constructed detectors output a

continuous pseudo-probabilistic value. This allows reporting

of the curve of performance as opposed to single operating

points. Fig. 3 shows that GDR increases with an increase

of the FDR for each of the four implemented configurations

illustrated in Fig. 2. It can be seen that the performance of the

baseline system is improved with parallel artefact detectors

as expected. The movement artefact detector running in

parallel has a greater impact on the performance than the

ocular artefact detector. This suggests that a larger proportion

of false positive epochs are caused by movement artefact
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rather than eyeblink/eye-movement activity. It can also be

explained as the ocular artefact can only block false decisions

from 4 EEG channels while movement artefact operates on

all 16 channels. Both artefact detectors running in parallel

together with the baseline detector result in an average

absolute reduction of 15.5% in FDR over all operating points

with an FDR reduction of 21.6% at the operating point of

GDR = 1 and a reduction of 10.9% at the operating point of

GDR = 0.1.

To highlight how the implemented additional artefact de-

tectors benefit the lowering of the FDR, analysis is performed

on a per-patient basis on a single point on each of the curves

of Fig. 3 (for a GDR of 1). Table II illustrates the FDR

achieved for each of the 4 configurations implemented for

all 8 patients. This table suggests that the inclusion of each

individual artefact detector results in a decrease of the false

detection rate, while the best results are obtained when both

detectors are run in parallel with the baseline classifier.

It is important to note that this system of artefact rejection

is designed primarily for rejection of ocular and movement-

related activity; other forms of artefact signal continue to

have an influence on the detection of epileptiform activity.

Looking more closely at Table II, it may be observed that the

use of the additional artefact detectors results in a smaller

improvement of FDR for some patients over others. This

is especially true for patients 4, 7 and 8. Patients 7 and

8 have the highest FDR to begin with and also see the

smallest improvement when the additional artefact detectors

are utilised. Patient 7 in particular, is one of the patients

containing the greatest amount of epileptiform activity. When

annotations were completed, an effort was made to only

annotate those events that displayed distinct epileptiform

activity. However, some patients contain other epileptiform

activity which is less distinctly formed. Many of the false

detections for these patients are caused by this activity,

meaning that the artefact detector does not have as great

an impact as desired on the FDR. Patient 8, to a lesser

extent, also contains this type of activity. Patient 4 is a sleep-

deprived record. Activity which is similar to epileptiform

events is produced during this type of recording. Hence,

many of the false positives may be due to this type of signal

being detected as opposed to being caused by artefact.

The work presented shows that the FDR rate can be low-

ered with the additional artefact detectors running in parallel

with the baseline epileptiform detector. A clear advantage of

this system of artefact rejection is in the fact that no sections

of data need to be removed prior to initial classification, as

has been widely done in the past. The pseudo-probabilistic

output of the classifier provides the flexibility of being able

to choose the required operating point, such as a GDR of

1 resulting in no epileptiform activity being missed. This

operating point allows the workload of the clinician to be

reduced while preserving perfect detection of epileptiform

activity. While not all types of artefact activity are covered

in this work, the two types that are taken into account by this

classifier enable the false detection rate to be reduced while

maintaining the good detection rate of the baseline system.
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TABLE II

FDR FOR EACH IMPLEMENTATION (MAINTAINING A GDR OF 100%)

Baseline +Ocular +Movement +Ocular & Movement

Patient FDR FDR FDR FDR

1 0.4354 0.3707 0.2291 0.2127

2 0.8903 0.8636 0.7126 0.6956

3 0.4159 0.3905 0.0963 0.0926

4 0.9296 0.9192 0.8187 0.8034

5 0.9029 0.8514 0.5066 0.4930

6 0.9236 0.8706 0.5790 0.5490

7 0.9997 0.9980 0.9749 0.9723

8 0.9987 0.9963 0.9597 0.9480

Mean 0.8120 0.7825 0.6096 0.5958
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