
  

 

Abstract—There is a need for objective tools to help clinicians 

to diagnose Alzheimer’s Disease (AD) early and accurately and 

to conduct Clinical Trials (CTs) with fewer patients. Magnetic 

Resonance Imaging (MRI) is a promising AD biomarker but no 

single MRI feature is optimal for all disease stages. Machine 

Learning classification can address these challenges. In this 

study, we have investigated the classification of MRI features 

from AD, Mild Cognitive Impairment (MCI), and control 

subjects from ADNI with four techniques. The highest accuracy 

rates for the classification of controls against ADs and MCIs 

were 89.2% and 72.7%, respectively. Moreover, we used the 

classifiers to select AD and MCI subjects who are most likely to 

decline for inclusion in hypothetical CTs. Using the 

hippocampal volume as an outcome measure, we found that the 

required group sizes for the CTs were reduced from 197 to 117 

AD patients and from 366 to 215 MCI subjects. 

I. INTRODUCTION 

LZHEIMER’S DISEASE (AD) poses a huge burden in 

modern societies [1]. In 2006, there were 26.6 million 

patients with AD worldwide and the prevalence is expected 

to grow fourfold by 2050 [1]. AD starts several years well 

before the criteria for clinical diagnosis are met and the 

diagnosis itself can only been confirmed by autopsy [2], [3]. 

Moreover, the diagnostic accuracy is relatively low and it 

depends on the setting where the evaluation takes place [2]. 

This hinders the AD patients’ treatment and management [2]. 

Disease-modifying drugs for AD are expected to appear in 
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the future but current treatments are only symptomatic [2], 

[4], [5]. In order for any disease-modifying drug to be most 

effective, the disease must be detected early. In the case of 

AD, this may imply to diagnose it at the Mild Cognitive 

Impairment (MCI) stage, when subjects have memory 

problems but they do not suffer from dementia [2], [4], [5]. 

Thus, there is a need for more accurate diagnostic tools that 

will allow an early detection of AD to maximize the benefits 

of future therapies. 

On the other hand, it is challenging to conduct Clinical 

Trials (CTs) in AD. Promising drugs in laboratory tests are 

often ineffective when tested on humans [2], [6]. Due to the 

slow progression of AD, CTs may run over long periods of 

time. This increases costs and drop-out rates [4], [5]. The 

heterogeneity of MCI [5] and the large variability in the 

clinical scales used as outcome measures in the CTs also 

lead to increases in the required sample sizes [4]. Moreover, 

most clinical scales of neurodegenerative diseases do not 

satisfy the criteria for rigorous linear measurements and it is 

difficult to know which variable they measure [6]. Thus, an 

important task in AD research is to develop new approaches 

to decrease the sample size needed in the CTs of AD and 

MCI so that fewer patients need to be recruited. 

Magnetic Resonance Imaging (MRI) is a promising 

biomarker to run CTs more efficiently and to help in AD 

diagnosis [2]–[4], [7]. It measures cerebral atrophy and it is 

already included in the differential diagnosis of AD from 

other dementias [7]. MRI technology is widely available and 

suitable for multi-center studies [4], [5]. Hippocampal and 

temporal lobe atrophy correlate with clinical decline in AD. 

In later stages of the disease, the atrophy extends through all 

the neocortex. The cortical thickness could also predict the 

progression from MCI to AD [4], [7]. 

Nonetheless, a few barriers still prevent the inclusion of 

biomarkers in CTs and in the diagnosis of AD. There is no 

fully established predictive relationship between any 

biomarker and the clinical outcomes yet [4] and no single 

biomarker is optimal to monitor all disease stages [3]. For 

instance, medial temporal atrophy cannot serve on its own as 

an absolute criterion to diagnose AD at the MCI stage [7]. 

Classification with Machine Learning can help to integrate 

biomarkers and discover data patterns useful for diagnosis 

and monitoring of disease [8]–[11]. Thus, a combination of 

biomarkers might help to reflect the evolution of AD better 
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[3], [7]. Machine Learning classification methods can also be 

useful for computer-assisted decision support [9]–[11]. This 

approach has been applied to classify MRI scans in AD and 

MCI [7], [8], [10]. Although Support Vector Machines 

(SVMs) are the most widely used classifiers, alternative 

techniques are available. However, these have not been fully 

tested yet [10]. In addition to helping in diagnosis, 

classification with Machine Learning can boost the power of 

CTs so that smaller sample sizes (fewer patients) are needed 

to prove the effects of a new treatment [8]. This relies on the 

hypothesis that the subjects who are more likely to decline 

according to a classifier will suffer greater clinical decline, 

thus showing the effects of the drug better [7], [8]. 

Thus, the aim of this study is twofold. Firstly, we test the 

diagnostic accuracy of four classifiers [9] applied to MRI 

features [12] of AD and MCI subjects. Secondly and more 

importantly, we investigate whether those classifiers can 

reduce the required sample sizes in CTs of AD and MCI by 

selecting the subjects that are most likely to decline. We 

present here preliminary results addressing these two issues. 

We build on previous findings [8] and focus our tests on 

automatically extracted MRI features to compare four 

classifiers: Logistic Regression (LR), SVM, Radial Basis 

Function (RBF), and C4.5 tree learner [9], [13]. 

II. METHODS 

A. ADNI Database 

Data used in this study were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (www.loni.ucla.edu/ADNI). The primary goal of 

ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of 

MCI and early AD. Determination of sensitive and specific 

markers of very early AD progression is intended to aid 

researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as lessen the time and 

cost of CTs. The initial goal of ADNI was to recruit about 

200 cognitively normal (CN) older individuals to be 

followed for 3 years, 400 people with MCI to be followed 

for 3 years, and 200 people with early AD to be followed for 

2 years. For up-to-date information see www.adni-info.org. 

B. Data Retrieval 

The ADNI clinical and numeric summary data used in this 

study are as of February 7
th

, 2011. The database was queried 

for basic demographic (age, gender, and years of education), 

clinical (number of ApoE ε4 alleles, ADAS-Cog, and MMSE 

scores), and MRI (cross-sectional FreeSurfer, v.4.3 [12]) 

data from CN, MCI, and AD subjects at baseline. This query 

reported 813 records. The FreeSurfer measures did not fully 

pass the overall quality control in 239 cases. Thus, 574 

subjects were available for analysis. However, there is a 

larger proportion of males in the ADNI MCI subgroup [4]. 

To avoid artifactual influences of the gender in the 

classification, 50 male MCI subjects were randomly removed 

from the sample [8]. Thus, the analyses were performed on 

524 subjects, whose basic data are detailed in Table I. 

FreeSurfer v.4.3 was used to compute features from T1 

MRI scans acquired at 1.5T [12]. This involved motion 

correction, affine transformation, intensity normalization, 

and removal of non-brain tissues. A non-linear wrapping of a 

brain atlas was applied to the subject’s scan to perform an 

atlas-based tissue segmentation of the subcortical structures. 

Then, cortical parcelation was done. Finally, volumetric, 

surface and cortical thickness summaries of the brain were 

computed. No manual editing was used, but the segmentation 

was quality-controlled. The numeric summaries are available 

at the ADNI website [14]. The reader interested in 

segmentation algorithms is referred, for instance, to [15]. We 

considered all variables computed with FreeSurfer to take 

advantage of the potentially complementary information of 

diverse MRI features [7]. This resulted in 328 variables per 

subject. Volumetric values were normalized to the intra-

cranial volume [7]. To assess the reduction in the sample 

sizes of CTs, the hippocampal volumes of all 96 AD and 185 

MCI subjects with available MRI follow-ups were retrieved. 

C. Classification With Machine Learning 

Only baseline data (normalized to the [0,1] range 

considering only the training data [9]) are used to develop 

the classifiers. In addition to the MRI features, age, gender, 

years of education, and number of ApoE ε4 alleles are 

presented to the classifiers [8]. The ADAS-Cog and MMSE 

values are not used for classification to avoid circular 

inference [8]. The algorithms are applied with the software 

Weka (version 3.6.3), which provides a well-known set of 

feature selection and classification methodologies [9], [13]. 

1) Feature selection 

Including irrelevant variables into a classifier can lead to 

overfitting and hinder the interpretation of the model. Hence, 

a feature selection stage is implemented to omit irrelevant 

information [9]–[11], [16]. A filter method, which is 

independent of any classifier, is applied [9], [11]. This 

consists of a forward selection (Weka’s BestFirst) to look for 

combinations of features with high individual predictive 

value of the diagnostic class and low inter-correlation 

(Weka’s CfsSubsetEval) [9]. Although univariate filtering 

might degrade the performance of multivariate classifiers, 

TABLE I 

DEMOGRAPHIC DATA OF THE ADNI SUBJECTS INCLUDED IN THIS STUDY 

 CN (N=180) MCI (N=222) AD (N=122) 

Gender (%) 50.6 / 49.4 51.4 / 48.6 52.5 / 47.5 

Age 75.92 ± 4.89 74.45 ± 7.38 74.94 ± 7.78 

Years of education 15.97 ± 2.96 15.50 ± 3.03 14.78 ± 3.11 

ApoE ε4 (%) 73.9 / 25.0 / 1.1 42.3 / 44.6 / 13.1 31.1 / 48.4 / 20.5 

ADAS-Cog 6.08 ± 2.86 11.94 ± 4.58 18.98 ± 6.35 

MMSE 29.10 ± 1.00 26.93 ± 1.82 23.11 ± 2.09 

Data are given as mean ± standard deviation (SD), except for the gender 

and ApoE ε4 distributions, where the relative frequencies of male / females 

and number of subjects with 0 / 1 / 2 ApoE ε4 alleles are given. 
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CfsSubsetEval takes into account the degree of redundancy 

among variables [9]. 

2) Classification Algorithms 

The selection of the best classifier for diagnosis is an open 

problem. Hence, we compare four different classifiers: LR, 

SVM, RBF, and C4.5. 

LR is a classical technique that estimates the class 

probabilities by applying the logit transformation to a linear 

regression model [10], [16]. The Logistic function in Weka 

implements the LR [9]. 

SVMs can implement non-linear decision boundaries by 

transforming the input data to a new space. A straight 

hyperplane in the transformed space corresponds to a non-

linear boundary in the original space. Then, the SVM 

optimizes the decision boundary that offers the greatest 

margin between classes. The transformation can be done 

with several kernels. We consider a polynomial kernel whose 

degree can range between 1 and 2, as preliminary analyses 

showed higher accuracy with this type of kernel than with a 

Gaussian one. Additionally, we vary the complexity 

parameter of the SVMs from log10(C) equal to –4 to +4. This 

classifier is applied with the SVM Sequential Minimal 

Optimization (SMO) algorithm in Weka [9], [10]. 

RBF is an artificial neural network with input, hidden, and 

output layers. The nodes in the hidden layer represent a 

particular point in the data space. Their output values depend 

on the distance between this point and the data instances. A 

Gaussian activation function transforms these distances into 

non-linear similarity measures, which are combined linearly 

at the output. The centers and widths of the Gaussian 

functions are estimated with k-means clustering. We consider 

values for the number and minimum standard deviation of 

the clusters between 1 and 4, and 0.05 and 0.55, respectively. 

The RBFNetwork function in Weka applies this classifier [9]. 

The C4.5 learner uses a tree-like structure to arrange a set 

of decisions into a hierarchy. The nodes in the tree structure 

involve testing a particular variable and the leaves provide 

the classification that applies to all instances that reach them. 

Features to be tested on each node are selected according to 

their information gain. A pruned C4.5 tree learner, 

implemented in the Weka’s J48 algorithm, is tested. We 

optimize the confidence level for pruning and minimum 

number of instances per leaf between the values of 0.05 and 

0.70, and 1 to 10, respectively [9], [10]. 

D. Diagnostic Accuracy and its Impact on CTs 

In this study, we deal with two research questions. The 

first one has to do with the fact that the diagnoses of AD and 

MCI are difficult to ascertain [2]. Thus, we test the accuracy 

of classifiers for CN vs. AD and CN vs. MCI separation. The 

second, and most important, issue is related to the large 

number of patients needed in CTs of AD and MCI [6], [8]. 

To test if machine learning helps to run more efficient CTs, 

we use the previously trained classifiers to select the patients 

most likely to decline and investigate if the sample sizes of 

hypothetical CTs in AD and MCI decrease. 

Ten different stratified full runs of a ten-fold cross-

validation are used to evaluate the classification performance 

of the classifiers [9]. In each fold of cross-validation, another 

ten-fold cross-validation was performed on the training 

samples to optimize the tunable parameters of each model 

via a grid-search procedure [9]. The classifiers were 

compared on the basis of their accuracy and area under the 

ROC curve (AUC) values [9], [16]. 

Once the classifiers have been trained, they are used to 

select the 50% and 33% of the MCI and AD subjects who 

are most likely to decline according to the outcome of these 

classifiers [8]. The atrophy of the hippocampus after 12 

months is considered the outcome measure in a hypothetical 

CT. The minimum sizes per group required to detect a 25% 

reduction in the atrophy rate for a two-arm (treatment and 

placebo) study with 80% power and two-sided test are 

computed (with and without the selection of subjects) by [8]: 
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where α = 0.05, β and σ are the significant level, mean and 

SD of the decrease in the outcome measure. zp is the value of 

the standard Gaussian distribution for P[Z < zp] = p [8]. 

III. RESULTS AND DISCUSSION 

First of all, feature selection was applied within each of 

the cross-validation folds to select the most informative 

variables. The average number (mean ± SD) of selected 

features was 36.37 ± 4.29 for the classification of CN vs. 

AD, and 24.41 ± 3.29 for CN vs. MCI. Some features were 

always selected in both classification tasks: age; number of 

ApoE ε4 alleles; right and left hippocampal, left entorhinal 

cortex, and left amygdale volumes; and average cortical 

thickness of the left middle temporal cortex. For the CN vs. 

AD classification, some other features extracted from areas 

around the temporal lobe (e.g., volume and thickness of the 

left inferior and middle temporal cortex) were also selected 

in all folds. This automatic feature selection agrees with 

previous reports that emphasized the relevance of regions in 

or near the medial temporal lobe in the progression of AD 

[4], [7], [10]. This supports the feature selection step, even 

though further validations and comparisons with wrapper 

methods are required. 

Secondly, the classifier parameters were optimized. The 

average degree of the SVM polynomial kernel was 2.0 in the 

CN vs. AD task and 1.7 for the MCI. In both cases, the 

log10(C) was about 0.3. Regarding the RBF, the data were 

mapped to a mean number of 2.5 clusters for both AD and 

MCI with a minimum SD of about 0.5. As for the tree 

learner, the optimized confidence level for pruning was 0.6 

for AD and 0.3 for MCI, with a minimum of 6 and 8 

instances per leaf for AD and MCI, respectively. 

Thirdly, the classifiers were tested. The accuracy and 

AUC appear in Table II. These values are similar to the 
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classification rates found in [8] and higher that those of [10] 

for a smaller dataset of CN and very mild AD subjects. 

However, comparing classification rates between studies is 

not straightforward due to the different datasets. The 

performance of the CN vs. MCI task was lower than for AD 

patients due to the overlap between CNs and MCIs [8]. The 

AUC values of the LR were significantly higher (p < 0.05) 

that those of the other classifiers. There were no significant 

differences among the accuracy values of the algorithms. 

Finally, the previously trained classifiers were used to 

reduce the samples sizes for CTs by selecting the 50% and 

33% of the subjects most likely to decline. Table III details 

the sample sizes for AD and MCI patients in CTs with the 

hippocampal volume as outcome measure. The sizes 

calculated without this scheme (“No selection”) are also 

given in Table III. Notable reductions in the number of 

subjects needed to run the hypothetical CT were achieved in 

most cases. The results confirm the utility of SVMs in this 

type of application [8] and highlight the potential of other 

classifiers. Yet, it was only possible to reduce the required 

number of patients in all cases with SVM. Thus, SVM might 

be the best technique to ensure that the selection of subjects 

does not decrease the power of the CT. 

IV. CONCLUSION 

In this preliminary study, we applied four Machine 

Learning classifiers [9] to MRI features [12] in AD and MCI 

patients. The ability of the classifiers to select the subjects 

who are most likely to decline and reduce the sample size in 

CTs was investigated. The results indicated that the use of 

SVMs to select the subjects for CTs decreased the sample 

size per arm (treatment and placebo) from 197 to 117 and 

from 366 to 215 AD and MCI subjects, respectively. 

Nonetheless, further analysis, including validation of the 

feature selection and inclusion of other classification 

techniques, are needed to corroborate or refute our results. 
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TABLE II 

AVERAGE PERFORMANCE (MEAN ± SD) OF THE CLASSIFIERS 

Experiment Classifier Accuracy AUC 

 LR 85.63 ± 5.94 0.919 ± 0.055 

CN vs. AD SVM 89.17 ± 5.08 0.884 ± 0.056 

 RBF 87.94 ± 5.24 0.874 ± 0.058 

 C4.5 83.93 ± 6.17 0.833 ± 0.064 

 LR 72.51 ± 6.79 0.803 ± 0.067 

CN vs. MCI SVM 72.65 ± 6.61 0.726 ± 0.067 

 RBF 70.92 ± 7.24 0.710 ± 0.088 

 C4.5 72.69 ± 7.24 0.725 ± 0.073 
 

TABLE III 

MINIMUM SAMPLE SIZES PER ARM TO DETECT A 25% ANNUAL RATE OF 

CHANGE IN THE HIPPOCAMPAL VOLUME WITH ALL SUBJECTS AND WHEN 

THOSE MOST LIKELY TO DECLINE ARE PRE-SELECTED WITH CLASSIFIERS 

Case Subset LR SVM RBF C4.5 

 No selection 197 197 197 197 

AD 50% 183 196 174 148 

 33% 218 117 132 143 

 No selection 366 366 366 366 

MCI 50% 243 290 420 380 

 33% 131 215 467 292 
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