
  

   

Abstract—Hypoglycemia is the most acute and common 
complication of Type 1 diabetes and is a limiting factor in a 
glycemic management of diabetes. In this paper, two main 
contributions are presented; firstly, ventricular repolarization 
variabilities are introduced for hypoglycemia detection, and 
secondly, a swarm-based support vector machine (SVM) 
algorithm with the inputs of the repolarization variabilities is 
developed to detect hypoglycemia. By using the algorithm and 
including several repolarization variabilities as inputs, the best 
hypoglycemia detection performance is found with sensitivity 
and specificity of 82.14% and 60.19%, respectively. 

I. INTRODUCTION 
YPOGLYCEMIA is the most common complication of 
type 1 diabetes [1] and can result death in diabetic 
patients [2], [3]. It can be dangerous in which patients 

with diabetes might not recognize early the hypoglycemic 
symptoms while plasma glucose decreases to very low level 
[4]. Therefore, hypoglycemia detection is crucial and, until 
recently, hypoglycemia detection systems are being still 
developed to obtain adequate performance [5-7]. 

This paper provides our main contribution through 
introducing ventricular repolarization variabilities and a 
swarm-based support vector machine (SVM) algorithm for 
hypoglycemia detection system. We have developed a 
hybrid particle swarm optimization (PSO) based SVM 
model for detection of hypoglycaemic episodes with inputs 
of repolarization variabilities. 

Ventricular repolarization variability is a physiological 
phenomenon where the duration of ventricular repolarization 
varies from beat-to-beat. Recent studies showed an increase 
of QT variability in relation to a variety of disease 
conditions, such as ventricular tachycardia or fibrillation [8], 
dilated cardiomyopathy [9] and myocardial Ischemia [10]. 
The process relating to beat-to-beat fluctuation of 
repolarization is likely mediated by stochastic behavior of 
ion channels [11].  

Ventricular repolarization in hypoglycemia was widely 
studied in which hypoglycaemia results in prolonged 
corrected-QT (QTc) intervals [12-14]. The association of 
heart rate in hypoglycemia was also investigated in which 
hypoglycaemia was found to increase heart rate [15]. 
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Moreover, hypoglycemia detection techniques, such as 
neural networks and fuzzy systems, were developed using 
repolarization as input [16-18]. On the other hand, 
repolarization variability has not yet been widely studied for 
hypoglycemia detection. Thus, this paper will develop a new 
hypoglycemia detection strategy by using ventricular 
repolarization variabilities as inputs and employing a novel 
swarm-based SVM technique.        

The new detection strategy uses repolarization 
variabilities in the form of repolarization variability indexes. 
One of the repolarization variability indexes is QTe interval 
variability indexes (QTeVI) as described in the following 
formulation [19], 
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where QTev and QTem are the variance and mean of QTe, 
respectively. QTe is the time interval from the Q point to the 
end of T-wave. HRv and HRm are the variance and mean of 
heart rate, respectively. The other repolarization variability 
indexes are TpTeVI, ToTpVI and RTpVI having similar 
formulation with QTeVI in (1), by replacing QTe with TpTe, 
ToTp and RTp. TpTe is the time interval from the peak to the 
end of T-wave; ToTp is the time interval from the beginning 
to the end of T-wave; and RTp the time interval from the R 
peak to the peak of T-wave. 

The new hypglycemia detection algorithm is based on  a 
swarm-based SVM technique. SVM has proved to yield 
good performance for classification in various applications 
[20] and showed the ability to generalize well, even with a 
small size sample [21]. In this study, particle swarm 
optimization (PSO) [22] is used to optimize the SVM 
parameters. SVM parameter selection using PSO has been 
applied for applications, such as engineering industry 
process [23].  

The rest of this paper is organized as follow. Section II 
describes the hypoglycemia detection method which is based 
on a swarm-based SVM technique. Section III presents the 
results and discussion, and section IV is the conclusion. 

II. METHODOLOGY 
To realize the hypoglycemia detection system, a swarm-

based SVM with input of repolarization variabilities is 
developed.  The system with four inputs and one output is 
described in Fig. 1. The inputs are QTeVI, TpTeVI, ToTeVI 
and RTpVI. The output is a binary state which involves 
hypoglycemia (+1) or non-hypoglycemia (-1). The base of 
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the system is SVM-RBF, which is SVM applying radial 
basis function (RBF). Optimal values of the SVM-RBF 
parameters are obtained using PSO. 

A.   SVM-RBF 
The detailed description of SVM is available in [24],[25]. 

Essentially, a SVM searches an optimal hyperplane to 
classify two class data {xk,zk}, where xk∈Rm is an m 
dimensional space and the associated zk is class label, -1 or 
+1. The optimal hyperplane can be defined by w⋅x+b=0, 
where w is hyperplane perpendicular vector and ⎟b⎜/⎟⎜w2⎟⎜is 
the distance of the hyperplane to the origin. The optimal 
hyperplane maximizes distance between two hyperplanes; 
w⋅x+b=+1 and w⋅x+b=−1.  

 

 
The hyperplane is determined by minimizing  

21
2kC ξ +∑ w ,                  (2) 

 
where C, called SVM soft margin parameter, is a constant 
for controlling the tradeoff between complexity and 
proportion of nonseparable points. ξk is nonnegative slack 
variable. The minimization is subjected to   
 

1k kz ( b ) ξ⋅ + ≥ −w x . (3) 
 
This optimization is solved by introducing the Lagrange 
multiplier αk for its dual optimization model. Using the 
optimal solution of αk

* and b*, the class prediction for any 
test vector x∈Rm is given by 
 

( ( ) + )* *
k k ksign z , bα∑ x x . (4) 

 
The data is mapped to higher dimensional feature so that this 
class prediction formulation can be used to separate 
nonlinear data. By introducing this mapping, the nonlinear 
SVM classifier has the following form, 
 

( ( ) + )* *
k k ksign z K , bα∑ x x ,             (5) 

 
where K(xk,x) is the mapping using kernel function. In this 

paper, the following radial basis function (RBF) kernel 
function is used, 

2( )k kK , exp γ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

x x x x ,  (6) 

where γ is a constant and the determination of its value is 
discussed in the next section.  

Facing to the imbalance data of this work, in which the 
data number in one class is far more than in another class, 
the modification on (2) is performed by  
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where w-1 and w1, which are different error weights,  are 
used to penalize more heavily the undesired errors related to 
the class with the smallest population [26],[27]. The 
determination of  w-1 and w1 is discussed in the next section.  

B. Optimization using PSO 
A PSO can be considered as a population-based 

technique. An individual, which is referred as particle, of 
population, which is referred as swarm, moves through an n-
dimensional solution space with adjusted velocity and 
position considering to the experience of particles in the 
swarm. The position of particle n pn at iteration (t+1) is 
changed by its velocity vn [22],   

 
( 1) ( ) ( 1),n n np t p t v t+ = + +              (8) 
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pbn is the personal best position and pgn is the best global 
position of particle of the swarm. r1() and r2() are random 
functions in the range [0 1] for weighting acceleration 
constants, c1 and c2, and w is inertia weight [28]. Those 
velocity and position are iterated until the convergence is 
reached. 

In the system, PSO algorithm is used to obtain the best 
parameters C, w-1 and w1 in (7), γ in (6) so that the SVM 
results the best performance. To measure the performance, 
sensitivity and specificity are used. Sensitivity is defined as 
the ratio of positive hypoglycemia decision number to the 
number of actual hypoglycemia cases, and specificity is 
defined as the ratio of non-hypoglycemia decision number to 
the number of actual non-hypoglycemia cases.  

The objective of the PSO algorithm is to maximize the 
sensitivity and specificity of the detection and therefore the 
fitness function is to maximize both values. The fitness 
function can be defined as      

     

 
 

Fig. 1.  Hypoglycemia detection system with inputs of the 
repolarization variabilities. 
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( ) ( ) 1  1 tr tr v vf  αψ α ζ αψ α ζ ρ= + − + + − +   (10) 
 
where ψtr and ζtr are the sensitivity and specificity in 
training, respectively, and ψv and ζv are the sensitivity and 
specificity in validation, respectively. The inclusion of 
validation performance in the fitness function is to reduce 
the risk of overtraining [29]. α∈[0 1] is a constant value to 
control the ratio of sensitivity and  specificity. The ratio of 
sensitivity/specificity is made with 0.58/0.42 in order to 
keep a higher value of the sensitivity than the specificity; α 
is set to 0.58. ρ is a penalty function to force the sensitivity 
and specificity to be more than 70% and 40%, respectively. 
To find this, the following formulation is created. Thus, by 
using ρ=10, the fitness function is more than 10 if sensitivity 
and specificity are more than 70% and 40%, respectively, 
and is less than 10 if  sensitivity and specificity are less than 
70% and 40%, respectively.   

10 0 7 0 4 0 7 0 4
0

v vtr trif . , . , . , .
otherwise

ψ ζ ψ ζρ
⎧⎪
⎨
⎪⎩

> > > >=  (11) 

III.  RESULTS AND DISCUSSION 
Electrocardiographic signals have been obtained from the 

five patients with type-1 diabetes. The signals are resulted 
from an overnight hypoglycemia study at the Princess 
Margaret Hospital for Children in Perth, Australia. Data are 
collected with approval from Women’s and Children’s 
Health Service, Department of Health, Government of 
Western Australia, and with informed consent. 

The ECG signals are recorded using Compumedics 
System and the correlated blood glucose levels (BGL) are 
measured using Yellow Spring Instrument. The ECG 
parameters, such as QTe interval, of 30-second epoch and 
the correlated BGL are captured in each five minutes. Based 
on these ECG parameters, the repolarization variability 
indexes are calculated using (1).   

 

 
The resulted repolarization variabilities of both 

nonhypoglycemia and hypoglycemia are described in Table 
I. In this paper, hypoglycemia is defined as the 
hypoglycemic level of less than 2.8 mmol/l. The table data 
show that the four variabilities are significantly higher in 
hypoglycemia than in non-hypoglycemia (p<0.01). The 

physiological mechanism of the higher variabilities in 
hypoglycemia than in non-hypoglycemia is not studied in 
this paper. Considering (1), the higher variabilities might be 
affected by either the heart rate variance or by the variance 
of repolarization parameters, or by both variances.    

The hypoglycemia detection has been developed using a 
swarm-based SVM algorithm. The inputs of the detection 
are the repolarization variabilities from the obtained clinical 
data as listed in Table I. The obtained repolarization 
variabilities data set, involving nonhypoglycemia and 
hypoglycemia parts, is randomly separated to training and 
validation data sets which are used for four-fold cross 
validation. The training set is used to build detection model 
and the model is validated using the validation set. The 
detection performance is measured in terms of sensitivityψ, 
specificity ζ and geometric mean gm.  A geometric mean 
gm=√(ψ.ζ) is suitable to indicate performance of detection 
for inputs consisting of imbalanced data [30],[31], in which 
the data number of one class is far higher than the data 
number of another class. This paper employs imbalance 
data, in which the data number of non-hypoglycemia is more 
than triple of the hypoglycemia data number. 

 

 
 
The performances of the detection using different inputs 

are presented in Table II. Five types of inputs consisting 
repolarization variabilities, as described in Table II, are 
used. In general, the detection using the all four variabilities 
as inputs has the best performance with sensitivity, 
specificity and gm are 82.14%, 60.19% and 70.25%, 
respectively. The validation results show contributions of 
the repolarization variability as inputs for the hypoglycemia 
detection; it contributes to the detection sensitivity of more 
than 67%. The contributions might correlate to that the all 
variability indexes change during hypoglycemic phases 
against non-hypoglycemic phases as described in Table I. 
Among the detection using the individual inputs, the 
hypoglycemia detection with input of QTeVI and ToTeVI 
yields the best performances, about 61% in terms of gm. The 
highest sensitivity in the validation is the detection with 
input of TpTeVI, but its associated specificity is low.  

Employing PSO in SVM is a suitable way to compare the 

TABLE I 
STATISTICAL DESCRIPTION OF THE REPOLARIZATION 

VARIABILITIES 

Repolarization 
Variability 

Nonhypoglycaemia 
(mean±std) 

Hypoglycaemia
(mean±std) p-value

QTeVI -3.46±1.37 -2.32±2.00 0.0003

TpTeVI -0.26±1.53 0.99±2.19 0.0004

ToTeVI -0.08±1.54 0.74±1.50 0.0091

RTpVI -3.11±1.37 -2.05±2.11 0.0011

TABLE II 
PERFORMANCE OF THE HYPOGLYCEMIA DETECTION WITH 

DIFFERENT INPUTS IN THE CROSS VALIDATION  
 Training  Validation 

Input Sens 
(%) 

Spec 
(%) 

gm 
(%) 

 Sens
(%) 

Spec 
(%) 

gm 
(%) 

QTeVI 84.52 51.23 64.17  85.71 49.07 61.47

TpTeVI 95.24 35.80 57.68  89.29 34.26 54.73

ToTeVI 75.00 58.33 65.98  67.86 57.41 61.27

RTpVI 79.76 54.94 61.00  78.57 45.37 52.69

QTeVI, TpTeVI, 
ToTeVI, RTpVI 100.00 62.35 78.85  82.14 60.19 70.25

Sens: sensitivity, Spec: specificity, gm : geometric mean  
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performance of the hypoglycemia detection having different 
inputs. By this method, the SVM parameters in (6) and (7) 
are automatically selected so that the detection has the best 
performance according to the correlated input. This method 
yields a better performance compared to the case when the 
SVM parameters are selected arbitrarily.     

IV.     CONCLUSION 
A novel hypoglycemia detection algorithm using 

ventricular repolarization variabilities has been developed. 
The repolarization variabilities QTeVI, TpTeVI, ToTeVI and 
RTpVI all contribute to the hypoglycemia detection strategy 
significantly. A swarm-based SVM-RBF algorithm has been 
developed successfully. Using all four variabilities as inputs, 
this new hypoglycemia detection algorithm yields the best 
performance with a sensitivity of 82.14% and specificity of 
60.19%. 
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