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Abstract— Glioma histologies are the primary factor in
prognostic estimates and are used in determining the proper
course of treatment. Furthermore, due to the sensitivity of
cranial environments, real-time tumor-cell classification and
boundary detection can aid in the precision and completeness
of tumor resection. A recent improvement to mass spectrometry
known as desorption electrospray ionization operates in an
ambient environment without the application of a preparation
compound. This allows for a real-time acquisition of mass
spectra during surgeries and other live operations. In this
paper, we present a framework using sparse kernel machines
to determine a glioma sample’s histopathological subtype by
analyzing its chemical composition acquired by desorption
electrospray ionization mass spectrometry.

I. INTRODUCTION

Brain cancer is the second leading cause of death in
children and young adults [1]. As of 2007, 126,000 cases of
brain tumor have been identified in the U.S. [2]. The most
common type of malignant brain cancers are gliomas, which
encompass about 80% of the 88,000 incidents in the U.S.
[3]. Patients with glioblastoma multiforme (GBM), the most
common glioma form, have a median survival time of only
10.6 months [4].

Part of a glioma’s diagnosis is its histopathological type, or
subtype, qualitatively based on the type of cell from which it
originated or most closely resembles [4]. The World Health
Organization (WHO) releases the International Classification
of Diseases for Oncology (ICD-O), which classifies gliomas
into three subtypes, namely, ependymomas, astrocytomas,
and oligodendrogliomas, each originating from ependymal
cells, astrocytes, and oligodendrocytes, respectively [5]. The
National Cancer Institute breaks down the current cases of
gliomas into 76% astrocytomas, 6.5% oligodendrogliomas,
and 5.9% ependymomas [6]. Tumors are further categorized
by a histopathological grade, based on how differentiated the
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tumor cells are from the original cells [4]. The American
Joint Commission on Cancer grades most tumors on a scale
from G1 through G4, where G1 tumors are composed of
cells similar to the original tissue, and G4 cells are the most
differentiated [4]. These histopathological categories are the
primary factors used in determining the prognosis of the
tumor and planning treatment [4], [7].

Due to the sensitive nature of the cranial environment, the
identification of cancerous tissue is of utmost importance
[8]. Histopathological classification is currently performed
by sending a resected sample for evaluation by an expert
[9]. This process is inefficient during a neural surgery where
accurate tumor classification and boundary detection are
crucial.

Numerous techniques exist for identifying and analyzing
cancerous cells. A well-established technique known as mass
spectrometry (MS) is often used for analysis of complex
proteins and lipids [10], [11]. MS is appropriate for this
application due to brain matter being primarily composed
of lipids and proteins [12]. It has been shown that certain
disorders and conditions cause a measurable change in the
composition of these molecules [11]. Specifically, gliomas
have been shown to exhibit differences in lipid composi-
tion compared to healthy glial tissue [12], [13]. MS is a
powerful tool to measure this change, where it is capable
of identifying the molecular composition of a given sample.
Specifically, the sample molecules are ionized into gas and
identified using a property of the ions known as the mass-
to-charge ratio (m/z) [10]. MS is specifically advantageous
in a clinical setting due to multiple reasons. First, it has
a high sensitivity and provides a large amount of chemical
information. In addition, the administration of contrast agents
can be avoided [8].

Traditional MS methods, including matrix-assisted laser
desorption/ionization (MALDI) [14], [15], require sample
preparation, which introduces a significant delay between
the sample resection and the mass spectrum acquisition for
clinical applications. A recent improvement to MS known as
desorption electrospray ionization mass spectrometry (DESI-
MS) involves ionization of molecules in an ambient envi-
ronment without the application of a preparation compound
[16]. This allows for a real-time acquisition of mass spectra
during surgeries and other live operations.

Prior work has shown that mass spectrometry can be
successfully used as a technique for cancer detection [17].
Furthermore, mass data from DESI-MS has been used to
successfully diagnose bladder carcinomas [11]. Glioma sub-
type classification has been explored using gene expression
data [18]. In [9], the authors present a preliminary study for
classification of glioma subtypes using mass spectrometry.

In this paper, we aim to bridge the advantage of in vivo
DESI-MS and real-time classification of glioma subtypes.
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Specifically, we show that machine learning techniques can
be used to provide neurosurgeons with real-time informa-
tion, which can be of critical importance for precise tu-
mor resection. There exists a plethora of techniques for
data classification. However, sparse kernel machines were
chosen for their superior performance in dealing with high-
dimensional data [19]. Here, we consider two sparse kernel
methods for glioma subtype classification, namely, support
vector machines and relevance vector machines. We show
that sparse kernel machines can be used for glioma subtype
classification with a high accuracy.

II. SPARSE KERNEL MACHINES

In this section, we discuss two sparse kernel-based algo-
rithms, namely, the support vector machine and the relevance
vector machine. For a more comprehensive discussion on
these methods, see [20].

A. Support Vector Machine Algorithm

The support vector machine (SVM) algorithm [20] is a
sparse kernel algorithm used in classification and regression
problems. Here we will briefly discuss the SVM framework
for the two-class classification problem. Let the training
set be given by x1, x2, . . . , xN , with target values given
by z1, z2, . . . , zN , respectively, where xn ∈ RD and zn ∈
{−1, 1}, n = 1, 2, . . . , N . Moreover, assume that this train-
ing set is linearly separable in a feature space RM defined
by the transformation φ : RD → RM ; that is, there exists a
linear decision boundary in the feature space separating the
two classes.

To classify a new data point x ∈ RD by predicting its
target value z define y(x) , wTφ(x) + b, where w ∈
RM is a weight vector and b ∈ R is a bias parameter.
This representation can be rewritten in terms of a kernel
function as y(x) =

∑N
n=1 anznk(x, xn) + b, where an,

n = 1, 2, . . . , N , and b are parameters determined by the
training set xn and zn, n = 1, 2, . . . , N , and k(·, ·) is the
kernel function. The sign of the function y(x) determines
the class of x. More specifically, for a new data point x, the
target value is given by z = sgn(y(x)), where sgn y , y

|y| ,
y 6= 0, and sgn(0) , 0. In the SVM approach the parameters
w and b are chosen such that the margin, that is, the minimum
distance between the decision boundary and the data points,
is maximized. Hence, only a subset of the training data (i.e.,
support vectors) is used to determine the decision boundary.
It can be shown that the solution to the SVM problem results
in a convex optimization problem [20], and hence, a global
optimum is guaranteed.

In the case where there is an overlap between the two data
classes, the SVM algorithm can be modified by allowing
misclassification of the data points. In this case, the margin
is maximized while penalizing misclassified points. Such a
trade-off is controlled by a positive complexity parameter C,
which is determined using a hold-out method such as cross-
validation [20].

B. Relevance Vector Machine Algorithm

The relevance vector machine (RVM) algorithm [21] is a
Bayesian sparse kernel algorithm, which can be regarded as
the Bayesian extension of the SVM algorithm.

Next, we briefly review the method for the classification
problem involving two data classes, namely C1 and C2. Let

the training set be given by x1, x2, . . . , xN , with target values
given by z1, z2, . . . , zN , where xn ∈ RD and zn ∈ {0, 1},
n = 1, 2, . . . , N , xn ∈ C1 if zn = 1, and xn ∈ C2 if zn = 0.
For a new data point x ∈ RD, we predict the associated
class membership posterior probability distribution, namely,
p(Ck|x), k = 1, 2, where p(Ck|x) is the conditional proba-
bility of the data class Ck given the data point x. The class
membership posterior probability for a given data point x is
given by

p(Ck|x) = σ(wTφ(x)), (1)

where φ : RD → RM is a fixed feature-space transformation,
with components φ(x) = [φ1(x), φ2(x), . . . φM (x)]T ∈
RM , w = [w1, w2, . . . wM ]T ∈ RM is the weight vector,
and σ(·) is the logistic sigmoidal function defined by σ(s) =

1
1+e−s . Note that the RVM algorithm is a special case of the
above model. Specifically, in the RVM algorithm wTφ(x)
in (1) has a special form (similar to the SVM algorithm)
given by

∑N
n=1 wnk(x, xn) + b, where k(·, ·) is the kernel

function. Hence, the class membership posterior probability
for a given data point x is given by

p(Ck|x) = σ

(
N∑

n=1

wnk(x, xn) + b

)
. (2)

In the sequel, we consider the general formulation (1).
Each weight parameter wi, i = 1, . . . ,M , in (1) is assumed
to have a zero-mean Gaussian distribution, and hence, the
weight prior distribution is given by

p(w|α) =
M∏
i=1

N (wi|0, α−1i ), (3)

where αi, i = 1, 2, . . . ,M , is the precision corresponding to
the weight component wi, α = [α1, α2, . . . αM ]T ∈ RM ,
and N (x|µ, σ2) represents the normal distribution with mean
µ and variance σ2. The parameters αi, i = 1, 2, . . . ,M , in
the prior distribution (3) are called the hyperparameters.

The hyperparameters αi, i = 1, 2, . . . ,M , can be deter-
mined by maximizing the marginal likelihood distribution
p(w|z, α), where z = [z1, z2, . . . zN ]T ∈ RN . As a result
of the maximization of the marginal likelihood distribution,
a number of the hyperparameters αi approach infinity. Thus,
the corresponding weight parameter wi will be centered at
zero, and hence, the corresponding component of the feature
vector φi(x) plays no role in the prediction, resulting in a
sparse predictive model. For further details of this approach,
see [20], [21].

III. GLIOMA TYPE CLASSIFICATION

In this section, we use the sparse kernel machines de-
scribed in Section II to classify the subtype of a glioma
sample. The data were collected from research subjects at the
Brigham and Women’s Hospital, Boston, MA. In this study,
28 glioma samples were acquired from multiple research
subjects, where the samples were either astrocytomas (A)
or oligodendrogliomas (O). For the purposes of maximizing
spatial resolution, the scanning pattern shown in Figure 1
was used to analyze each sample [22]. In order to account
for the chemical variation within a sample, numerous spectra
were extracted from each sample (one spectrum from each
scanned row). The number of spectra varied depending on
the amount of usable tissue in the sample. In our data set,
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each sample contained between 7 to 45 spectra. A total of
19 astrocytoma samples and 9 oligodendroglioma samples
were scanned, where the corresponding number of spectra
was 426 and 205, respectively. To account for large-scale
intensity differences between samples, each spectrum was
normalized to zero mean and unit standard deviation.

Fig. 1. Scan pattern

The mass spectrum is regarded as a mapping MS :M→
R+, where M , {m1, . . . , mD} denotes the m/z values
ranging from 150 to 1,000, with a resolution of 0.0833.
Moreover, for a given m/z value mi, i ∈ {1, . . . , D},
MS(mi) denotes the number of corresponding ions detected.
These intensities collectively can be represented by a vector
x = [s1, . . . , sD]T ∈ RD, where si = MS(mi), i =
1, . . . , D, and si is referred to as a feature point. For a given
set of mass spectra {x1, . . . , xN}, xi ∈ RD, i = 1, . . . , N ,
the target value zi ∈ {0, 1}, i = 1, . . . , N , is provided by
the pathologist, where zi = 0 (resp., zi = 1) indicates that xi
was from an astrocytoma (resp., oligodendroglioma) sample.

The SVM and RVM frameworks were chosen for the
classification problem, both with a linear kernel k(u, v) ,
uTv, u, v ∈ RD. We applied the leave-one-out method for
validation [20]. Specifically, one spectrum xj and its corre-
sponding target value zj , j ∈ {1, . . . , N}, are excluded, and
the remaining spectra and their corresponding target values
are used as the training set. A class, yj , is assigned to xj
using the trained model. This process is repeated for each
spectrum, and the outputs are compared to the target values
zj to determine the accuracy of the classifier.

The goal of cross-validation is to measure how well a
classifier generalizes to a data set independent from the set
used for training. As can be expected, the spectra extracted
from the same sample exhibit a large degree of dependence.
To compensate for this, spectra from the same sample as xj
are also removed from the training set. Another issue was
the difference in the number of spectra from each sample
as discussed earlier in this section. This was remedied by
trimming the training set to use the same number of spectra
from each sample. This trimming, however, was carried out
randomly, introducing some variation into the performance
of cross-validation. Thus, cross-validation was repeated 10
times, and the accuracies were averaged in the results of
Table I. The MATLAB implementation of SVM was used
with the penalty C = 1. The MATLAB RVM library [23]
was used for RVM classification.

Table I shows the performance of the SVM and RVM
for the problem of classifying mass spectra corresponding to
astrocytoma and oligodendroglioma. Each row lists the sam-
ple number, the subtype determined by the pathologist (A for

TABLE I
CLASSIFICATION RESULTS PER SAMPLE

Sample Subtype SVM RVM

1 A 100% 100%
2 A 0% 0%
3 A 0% 0%
4 A 100% 100%
5 A 100% 100%
6 A 100% 100%
7 A 100% 100%
8 A 100% 100%
9 A 100% 100%
10 A 76% 100%
11 A 100% 84%
12 A 100% 100%
13 A 100% 100%
14 A 100% 100%
15 A 97% 100%
16 A 100% 100%
17 A 100% 100%
18 A 75% 100%
19 A 0% 100%
Astrocytoma 81% 89%

20 O 70% 78%
21 O 92% 17%
22 O 100% 100%
23 O 88% 0%
24 O 38% 9%
25 O 0% 0%
26 O 100% 100%
27 O 100% 7%
28 O 100% 100%

Oligodendroglioma 77% 76%

Overall 79% 82%

astrocytoma and O for oligodendroglioma), the percentage of
the spectra in this sample that were properly classified using
SVM and RVM. Comprehensive classification accuracies are
listed at the bottom of each table, representing the percentage
of all astrocytoma and oligodendroglioma spectra that were
properly classified as well as the overall classification accu-
racy. These accuracies may be analyzed to identify samples
that are given incorrect subtypes by the pathologists, or
to identify samples that are chemically dissimilar to other
samples in the same subtype.

Finally, a feature selection technique was applied to the
spectra. With thousands of points in the spectrum to describe
two classes, redundancy in the information is expected [24].
Feature selection not only can improve the classification
performance but also can aid in identifying the appropriate
biomarkers for each glioma type. We implemented an iter-
ative method of reducing the number of features [24]. The
feature points were split into 10 subsets of size P ∈ Z+,
{x1, . . . , xP }, {xP+1, . . . , x2P }, . . . , {x9P+1, . . . , xM}.
The purpose was to identify the subset with the least effect
on classification performance; these features were assumed
to be either redundant or noisy, and were removed. The
classification performance was measured by cross-validation,
using an SVM classifier. This process was repeated iter-
atively, removing the features that contribute least to the
classification performance in each iteration. A summary of
these results are shown in Table II. As shown in Table II,
the classification performance increases to 98% by selecting
the most significant features.
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TABLE II
ITERATIVE FEATURE SELECTION RESULTS

Iteration # Features Accuracy
0 10,200 79.4%
5 6,023 85.0%

10 3,556 85.4%
15 2,100 88.1%
20 1,240 91.9%
25 733 94.1%
30 433 98.3%
35 255 97.8%
40 151 96.6%
45 90 97.6%
50 54 97.1%
55 32 97.0%
60 19 98.3%
65 9 97.0%
69 2 82.3%

IV. CONCLUSION

In this paper, we proposed an approach for glioma subtype
classification using mass spectrometry data. We considered
two sparse kernel methods for glioma subtype classification,
namely, SVM and RVM, and showed that sparse kernel
machines can be used for glioma subtype classification with
a high accuracy. Future work includes exploring alternative
preprocessing, feature selection, and classification methods,
extending this framework to the multi-class glioma classifi-
cation problem as well as biomarker detection. Identifying
the most significant molecules using a feature selection
method can provide a deeper insight into the pathology of
the condition and can improve treatment methods.

ACKNOWLEDGMENTS

J. Huang and B. Gholami acknowledge several fruitful
discussions with Dr. Vandana Mohan.

REFERENCES

[1] A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer Statistics, 2010.”
Cancer J. Clin., Jul. 2010, http://caonline.amcancersoc.org/.

[2] S. F. Altekruse, C. L. Kosary, M. Krapcho, N. Neyman,
R. Aminou, W. Waldron, J. Ruhl, N. Howlader, Z. Tatalovich,
H. Cho, A. Mariotto, M. P. Eisner, D. R. Lewis, K. Cronin,
H. S. Chen, E. J. Feuer, D. G. Stinchcomb, and B. K. Ed-
wards, “SEER Cancer Statistics Review 1975-2007,” Bethesda, MD,
http://www.seer.cancer.gov/csr/1975 2007/.

[3] American Cancer Society, “Brain and Spinal
Cord Tumors in Adults,” Atlanta, GA, 2009,
http://www.cancer.org/cancer/braincnstumorsinadults/.

[4] S. B. Edge and D. R. Byrd, AJCC Cancer Staging Manual, 7th ed.
New York, NY: Springer-Verlag, 2009.

[5] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C.
Burger, A. Jouvet, B. W. Scheithauer, and P. Kleihues, “The 2007
WHO classification of tumours of the central nervous system,” Acta
Neuropathologica, vol. 114, no. 2, pp. 97–109, Aug. 2007.

[6] Central Brain Tumor Registry of the United States, “Primary
Brain and Central Nervous System Tumors Diagnosed
in the United States in 2004-2007,” Hinsdale, IL, 2011,
http://www.cbtrus.org/reports/reports.html.

[7] S. Cha, “Update on brain tumor imaging: from anatomy to physiol-
ogy.” Am. J. Neurorad., vol. 27, no. 3, pp. 475–87, Mar. 2006.

[8] L. S. Eberlin, A. L. Dill, A. J. Golby, K. L. Ligon, J. M. Wise-
man, R. G. Cooks, and N. Y. R. Agar, “Discrimination of human
astrocytoma subtypes by lipid analysis using desorption electrospray
ionization imaging mass spectrometry.” Angew. Chem. Int. Ed. Engl.,
vol. 49, no. 34, pp. 5953–6, Aug. 2010.

[9] V. Mohan, N. Agar, F. Jolesz, and A. Tannenbaum, “Automatic Classi-
fication of Glioma Subtypes and Biomarker Identification Using DESI
Mass Spectrometry Imaging,” in MICCAI 2010 Workshop Comp.
Imag. Biomark. Tumors, 2010.

[10] R. Aebersold and M. Mann, “Mass spectrometry-based proteomics.”
Nature, vol. 422, no. 6928, pp. 198–207, Mar. 2003.

[11] A. L. Dill, D. R. Ifa, N. E. Manicke, A. B. Costa, J. A. Ramos-
Vara, D. W. Knapp, and R. G. Cooks, “Lipid profiles of canine
invasive transitional cell carcinoma of the urinary bladder and adjacent
normal tissue by desorption electrospray ionization imaging mass
spectrometry.” Anal. Chem., vol. 81, no. 21, pp. 8758–64, Nov. 2009.

[12] M. Köhler, S. Machill, R. Salzer, and C. Krafft, “Characterization of
lipid extracts from brain tissue and tumors using Raman spectroscopy
and mass spectrometry.” Anal. Bioanal. Chem., vol. 393, no. 5, pp.
1513–20, Mar. 2009.

[13] A. Beljebbar, S. Dukic, N. Amharref, S. Bellefqih, and M. Manfait,
“Monitoring of biochemical changes through the c6 gliomas progres-
sion and invasion by fourier transform infrared (FTIR) imaging.” Anal.
Chem., vol. 81, no. 22, pp. 9247–56, Nov. 2009.

[14] F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait, “Matrix-
assisted laser desorption/ionization mass spectrometry of biopoly-
mers,” Anal. Chem., vol. 63, no. 24, pp. 1193A–1203A, Dec. 1991.

[15] N. Y. R. Agar, J. G. Malcolm, V. Mohan, H. W. Yang, M. D. Johnson,
A. Tannenbaum, J. N. Agar, and P. M. Black, “Imaging of meningioma
progression by matrix-assisted laser desorption ionization time-of-
flight mass spectrometry.” Anal. Chem., vol. 82, no. 7, pp. 2621–5,
Apr. 2010.

[16] R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, “Detection
Technologies. Ambient mass spectrometry.” Science, vol. 311, no.
5767, pp. 1566–70, Mar. 2006.

[17] O. J. Semmes, Z. Feng, B.-L. Adam, L. L. Banez, W. L. Bigbee,
D. Campos, L. H. Cazares, D. W. Chan, W. E. Grizzle, E. Izbicka,
J. Kagan, G. Malik, D. McLerran, J. W. Moul, A. Partin, P. Prasanna,
J. Rosenzweig, L. J. Sokoll, S. Srivastava, S. Srivastava, I. Thompson,
M. J. Welsh, N. White, M. Winget, Y. Yasui, Z. Zhang, and L. Zhu,
“Evaluation of serum protein profiling by surface-enhanced laser des-
orption/ionization time-of-flight mass spectrometry for the detection
of prostate cancer: I. Assessment of platform reproducibility.” Clin.
Chem., vol. 51, no. 1, pp. 102–12, Jan. 2005.

[18] A. Li, J. Walling, S. Ahn, Y. Kotliarov, Q. Su, M. Quezado, J. C.
Oberholtzer, J. Park, J. C. Zenklusen, and H. A. Fine, “Unsupervised
analysis of transcriptomic profiles reveals six glioma subtypes.” Can-
cer Res., vol. 69, no. 5, pp. 2091–9, Mar. 2009.

[19] M. Wagner, D. Naik, and A. Pothen, “Protocols for disease classifi-
cation from mass spectrometry data.” Proteomics, vol. 3, no. 9, pp.
1692–8, Sep. 2003.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. New
York, NY: Springer-Verlag, 2006.

[21] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector
Machine,” J. Mach. Learn. Res., vol. 1, no. 3, pp. 211–244, Aug. 2001.
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