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Abstract—PET-CT provides aligned anatomical (CT) and 

functional (PET) images in a single scan, and has the potential to 

improve brain PET image segmentation, which can in turn 

improve quantitative clinical analyses. We propose a statistical 

segmentation algorithm that incorporates the prior anatomical 

knowledge represented by probabilistic brain atlas into the 

variational Bayes inference to delineate gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) in brain PET-CT 

images. Our approach adds an additional novel aspect by 

allowing voxels to have variable and adaptive prior probabilities 

of belonging to each class. We compared our algorithm to the 

segmentation approaches implemented in the expectation 

maximization segmentation (EMS) and statistical parametric 

mapping (SPM8) packages in 26 clinical cases. The results show 

that our algorithm improves the accuracy of brain PET-CT 

image segmentation. 

 

Index Terms- Brain image segmentation, PET-CT imaging, 

Gaussian mixed model, variational Bayes inference 

I. INTRODUCTION 

Positron emission tomography (PET) can detect subtle 

functional changes at the early stages of a disease process, and 

hence offers advantages over anatomical imaging techniques 

in the early evaluation of neurodegenerative disorders [1]. An 

accurate quantitative analysis of brain PET images 

necessitates clear delineation of gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). Since manual 

segmentation of brain images is time consuming and highly 

subjective, a number of automated approaches have been 

proposed in the literature, including those based on the brain 

atlas [2, 3], statistical models [4, 5], deformable models [6] 

and Markov random field (MRF) models [7]. 

There are several tools which can register a brain PET 
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image to an atlas and map brain structures from the atlas to the 

image [2, 3]. Normal anatomical variation across patients, 

however, limits the performance of such atlas-based joint 

registration-comparison segmentation. Statistical approaches 

[4, 5] assume brain voxel values to satisfy the Gaussian mixed 

model (GMM) with parameters estimated by the expectation 

maximization (EM) algorithm, and determine voxel class 

labels based on the maximum a posteriori (MAP) criterion. To 

advantage their complementary strengths, atlas-based 

approaches have been combined effectively with statistical 

techniques to improve segmentation accuracy. The 

segmentation algorithm [8] in the statistical parametric 

mapping (SPM8) [9] uses a modified cluster technique based 

on the GMM, where the prior likelihood of each voxel 

belonging to each brain structure is provided by a brain atlas.  

Traditionally, brain tissue segmentation is based on 

magnetic resonance (MR) images, since these images yield 

high-contrast anatomical information. However, MR images 

provide little functional data and the delineation of 

neurodegenerative diseases on the basis of atrophy is 

problematic. PET-CT scanning has now replaced PET-only 

scanning in clinical practice. The PET-CT scanner combines a 

PET scanner and a fast helical computed tomography (CT) 

scanner in one instrument, thus the functional PET imaging is 

complemented by the co-registered anatomical CT imaging. 

The high resolution CT anatomical data offers the opportunity 

to improve the segmentation of brain structures in PET 

images. Potesil et al. [10] used both PET and CT information 

to calculate the joint-likelihood ratio for tumor delineation. In 

our previous work, we applied the spatial clustering technique 

[11] and MAP-MRF model [12] to segment brain PET-CT 

images. Recently, we investigated the automated weighting 

scheme [13] and classification fusion method [14] to use the 

PET and CT data jointly and adaptively. 

In this paper, we propose a more accurate statistical 

segmentation approach called the probabilistic atlas-based 

variational EM (PA-VEM) algorithm for brain PET-CT 

images. In this algorithm, we revise the statistical model by 

enabling each voxel to have different prior probabilities, 

replace the maximum likelihood estimation with the 

variational Bayes inference [15], and use the probabilistic 

brain atlas to incorporate prior anatomical knowledge into the 

segmentation process. We compared our algorithm to the 

segmentation approaches in the EM segmentation (EMS) [16] 

and SPM8 packages in clinical studies. 
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II. METHOD 

A. Data Acquisition 

We used 26 clinical brain FDG PET-CT studies, which had 

corresponding clinical MR (1.5T) data. All PET-CT studies 

were acquired on a Biograph LSO Duo PET-CT scanner 45 

min after injection of 350 MBq of 18F-FDG. PET data were 

interpolated such that both PET and CT data had a dimension 

of 47512512   and a voxel size of 3.40.490.49   mm3. 

Each MR image was aligned to the corresponding CT image 

by using the SPM8 package [9], and then segmented into GM, 

WM and CSF by using the EMS package [16]. 

B. Probabilistic Brain Atlas Construction  

We built the probabilistic brain atlas for each testing 

PET-CT image that was to be segmented from a set of 25 

training cases, each of which comprised co-aligned PET data, 

CT data and segmented MR data. The transformation that 

mapped each training CT data to the testing CT data was 

estimated using the SPM8 package, and then applied to the 

segmented MR data. The spatially normalized MR 

segmentation results of all training cases were finally 

averaged and defined as the probabilistic brain atlas. For a 

PET-CT image with N  voxels and K  target regions, the 

probabilistic atlas is a matrix with KN   elements, and each 

element nkP  represents the anatomical knowledge provided 

by training cases on the prior probability of voxel n  

belonging to a particular tissue class k .  

C. Segmentation Model  

A brain PET-CT image is denoted by a set of 2D vectors 

 NnxX n ,,2,1;  , where  nnn SUVHUx ,  is the 

combination of the Hounsfield unit (HU) at voxel n  in CT 

data and the standardized uptake value (SUV) at voxel n  in 

PET data. Each voxel has a latent class label vector nz  

comprising a 1-of- K  binary vector with component 1nkz  

representing that voxel n  belongs to tissue type k . The 

assembly of latent class labels gives an admissible 

segmentation result  NnzZ n ,,2,1;  . 

We assumed that the vectors of the voxels from each of K  

brain tissue types can be modeled by a Gaussian distribution 

 1, kkΝ  . The prior probability of each nx  being sampled 

independently from the k th Gaussian component was 

denoted by nk . Different from the traditional GMM, the 

prior probabilities in our model vary spatially with voxel 

locations and were predetermined by the probability brain 

atlas. Adopting the variational Bayes inference [15], we 

further assumed other Gaussian distribution parameters 

 Kkkk ,,2,1;,    to be random variables following 

the independent Gaussian-Wishart distribution. 
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where  0000 ,,, Wm   are hyper-parameters. 

To estimate the MAP solution for image segmentation, we 

introduced a variational distribution  ,Zq  to infer the 

posterior distribution  XZp , . For any choice of  ,Zq , 

the following decomposition holds [15] 
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Since the log-likelihood  Xpln  is a constant for the 

observed image X , maximizing  qL  is equivalent to 

minimizing the Kullback-Leibler (KL) divergence between 

 ,Zq  and  XZp , . Consequently, the variational 

distribution  ,Zq  that maximizes  qL  will be an 

approximation to the posterior distribution  XZp , . With 

the assumption that  ,Zq  can be factorized between the 

latent variables Z  and distribution parameters  , this 

maximization problem can be solved by using the variational 

EM (VEM) algorithm [15]. 

D. Segmentation Algorithm  

Although our method differs from traditional inference of 

GMM in the assumptions regarding the prior probability of 

each voxel and the use of the prior anatomical knowledge in 

probabilistic brain atlas, the posterior distribution  XZp ,  

can still be inferred in line with the VEM algorithm [15]. Our 

PA-VEM segmentation algorithm can be summarized as 

follows. 

Step 1: Initialize the prior probabilities nknk P , 

expectations nknk Pr  , and hyper-parameters: 1.00  , 

kk xm 0 ,   kk SW 
10 , and 20  . 

Step 2: Calculate synthetic statistics:  
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Step 3: Calculate hyper-parameters: 
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 Step 4: Calculate the expectation of nkz : 
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Step 5: To use the anatomical information to regularize the 

statistical segmentation, we linearly combined the 

probabilistic brain atlas with the intermediate segmentation 

result as follows 

  nknknk rPr   1              (9) 

Step 6: If the number of iteration reaches 25 or the number 

of changed labels is less than 100, stop the segmentation 

process; otherwise, go to step 2. 

E. Validation 

We adopted the leave-one-out cross validation scheme, 

using one case each time for testing and the other 25 cases for 

training. For training cases, the GM, WM and CSF segmented 

from MR images were used to construct the probabilistic brain 

atlas, and for testing cases those MR segmentation results 

were used as an approximation of the ground truth. We 

compared the proposed PA-VEM segmentation algorithm to 

the segmentation methods in the EMS and SPM8 packages. 

The ability of each algorithm to delineate each brain tissue 

type was assessed by using the Dice similarity coefficient 

(DSC) [17]. The accuracy of segmenting the entire brain was 

measured by the percentage of correctly classified voxels. 

 

III. RESULT 

The segmentation results of the 235th sagittal slice, 240th 

coronal slice and 21st transaxial slice from one PET-CT study 

(case 16) obtained by using the EMS package, SPM8 package 

and our PA-VEM algorithm are shown in Figure 1. The EMS 

and SPM8 packages result in obvious under-segmentation of 

WM, whereas our algorithm can produce results that are much 

more similar to ground truth. The mean and standard deviation 

of the three algorithms’ segmentation accuracy in the 26 

clinical cases are shown in Table I. It is evident that the 

proposed PA-VEM algorithm substantially improves the 

accuracy of brain PET-CT image segmentation, particularly in 

the delineation of WM. 

IV. DISCUSSION 

In statistical segmentation approaches, voxel values are 

modeled by the GMM with constant parameters, which are 

usually determined according to the maximum-likelihood 

criterion via the EM algorithm. However, the EM algorithm is 

intrinsically susceptible to over-fitting and local optimum 

convergence. We replaced the maximum-likelihood 

estimation with the variational Bayes inference, where model 

parameters were viewed as random variables, and hence 

 
Fig. 1 The 235th sattigal slice, 240th coronal slice and 21st transaxial in one PET-CT study #16 (1st and 2nd columns), their segmentation results 

obtained by applying the EMS package (3rd column), SPM8 package (4th column), and PA-VEM algorithm (5th column), and the ground truth (6th 

column) 

TABLE I 

MEAN ± STANDARD DEVIATION OF SEGMENTATION ACCURACY OF THREE 

ALGORITHMS 

Algorithms SPM8 EMS PA-VEM 

DSC of GM (%) 75.6±4.0 78.5±4.1 80.1±4.8 
DSC of WM (%) 56.6±4.6 64.3 ±4.1 70.1±5.7 
DSC of CSF (%) 46.6±5.5 41.6±6.2 44.7±4.9 
Overall 

Accuracy (%) 
67.3±4.2 70.6±4.4 74.2±5.1 
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increased the segmentation algorithm’s flexibility. 

Meanwhile, traditional statistical segmentation algorithms 

rely only on voxel values, and may result in noise-related 

artifacts, especially in PET-CT images where the noise can be 

large. We abandoned the unified prior mixing coefficients and 

allowed voxels to have different prior probabilities of 

belonging to all classes. To incorporate the prior anatomical 

information into the segmentation process, we used the 

probabilistic brain atlas not only to initialize the prior 

probabilities and other parameters, but also to regularize each 

intermediate result. Thus, the proposed PA-VEM algorithm is 

more suitable than other statistical approaches for brain 

PET-CT image segmentation. 

In our algorithm, the combination coefficient   plays a 

pivotal role in balancing the contribution of the prior 

anatomical knowledge and observed image information to the 

segmentation process. A smaller   allows the image data to 

dominate the segmentation process, whereas a larger   gives 

the probabilistic atlas more weight. The average segmentation 

accuracy in all cases versus the values of   is plotted in Fig. 

3. It shows that the accuracy of our algorithm is not sensitive 

to the choice of  , when 5.0 . The results presented in Fig. 

1 and Fig. 2 were generated by setting   to 0.3, which 

according to our trial experiments can produce good 

segmentation accuracy. 

It is generally recognized that delineating brain tissues in 

PET-CT image is challenging, since those images have low 

spatial resolution, low contrast and high noise level. Hence, 

using the probabilistic brain atlas is essential to solve such 

segmentation problem. However, constructing a probabilistic 

atlas for each to-be-segmented study involves registration of 

multiple training cases to that study, which is time consuming. 

This is a major drawback of the proposed algorithm. Our 

future work will focus on fast and efficient atlas construction. 

V. CONCLUSION 

We have proposed the PA-VEM algorithm to delineate 

GM, WM, and CSF regions from clinical brain PET-CT 

images. We found that our algorithm substantially improves 

the segmentation accuracy when compared to the 

segmentation approaches in the widely used EMS and SPM8 

packages.  
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