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ABSTRACT

Accuracy and robustness are fundamental requirements of
any automated method used for segmentation of medical im-
ages. Model-based segmentation (MBS) is a well established
technique, where uncertainties in image content can be to a
certain extent compensated by the use of prior shape informa-
tion. This approach is, however, often problematic in cases
where image information does not allow for generating a
strong feature response, one example being soft tissue organs
in CT data, which typically appear in low contrast. In this
paper, we enhance our recently proposed framework for voxel
classification-based refinement of MBS using a level-set seg-
mentation technique with shape priors. We also introduce
a novel feature weighting methodology that improves the
performance of the classifier, demonstrating results superior
to the previous feature selection method. Results of fully
automated segmentation of low contrast organs in head and
neck CT are presented. Compared to our previous approach,
we have achieved an increase of up to 22% in segmentation
accuracy.

Index Terms— Model-based segmentation, classifica-
tion, radiation therapy planning, level-sets, feature weighting.

1. INTRODUCTION

An essential requirement for successful implementation of In-
tensity Modulated Radiation Therapy (IMRT) [1] is accurate
contouring of the target structures as well as organs at risk.
Manual contouring is typically very time consuming and suf-
fers from both, intra- and inter- observer variability. Fully au-
tomated segmentation methods for radiation therapy planning
(RTP) are highly desirable, however, given the high anatomi-
cal variability and low contrast, the task is very challenging.

Current automated segmentation methods in RTP are ei-
ther deformable (model-based) approaches, or atlas-based
methods. Deformable models rely on distinct image fea-
tures, such as edges and may also include prior shape and
appearance information [2], however, such methods suffer in
regions of low contrast, where object boundary discrimina-
tion is not distinct. Atlas-based methods are a popular choice
in RTP [3, 4], since prior information is integrated in a simple
and effective way. Such methods rely on one or several atlas

images, which contain contours labeled by an expert. To seg-
ment a new clinical case, the atlas is registered to the image
and the structures of interest are then transformed using the
mapping determined by the registration. The major draw-
back of this approach is its reliance on accuracy of image
registration which can fail with high variability of the patient
anatomy, organ motion, and image artifacts.

Recently, we proposed a hybrid approach which combines
registration and model-based segmentation into a common
framework [5]. We build an organ-specific probabilistic at-
las by affine registration of expert segmentations, and reg-
ister the atlas with the result of model-based segmentation.
The uncertainty area in the transferred atlas is refined using
k-nearest neighbor (kNN) based voxel classification using a
plurality of low-level image features. The features are organ-
specific and have been selected using a combinatorial feature
selection method. One drawback with the method in [5] is
manual selection of a threshold that is used to obtain the fi-
nal segmentation from the combined classification and atlas
probabilities.

In this paper, we propose a variational approach which
attempts to address this issue. Another improvement to the
previous framework is the introduction of feature relevance
weighting, which is aimed at improving the classification per-
formance of the kNN method. The introduced methodology
is generic and can be utilized in other probabilistic segmenta-
tion and classification applications.

The paper is organized as follows. In the next section,
we describe our previous segmentation framework, followed
by the proposed feature weighting method, and the variational
segmentation approach. In Section 3, we present the quantita-
tive and qualitative evaluation of our method when compared
to manual expert segmentations. Finally, discussion and con-
clusions are presented in Section 4.

2. METHODS

2.1. Previous segmentation framework

As a first step, a collection of manually segmented ground
truth data is used to create a organ-specific probabilistic atlas
using affine registration [5]. Given a new image, a model-
based segmentation (MBS) technique based on energy mini-
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Fig. 1. Plot showing the increase in AUC by feature relevance
weighting. The AUC value at iteration 0 is achieved from the
floating feature selection method.

mization [2] is applied to segment the anatomical structures
of interest.

The final step is to refine the resulting segmentations.
Each probabilistic atlas is registered with the result of MBS,
and the uncertainty area consisting of probabilities between
0 and 1 is refined by voxel classification. An optimal set
of organ-specific features selected from a pool of low-level
image features describing various structural and textural prop-
erties at different scales are used [5]. For classification, an
efficient implementation of a kNN classifier [6] is applied to
compute the probability for a particular voxel to belong to the
object of interest. This probability is averaged with the atlas
probability, and the result is thresholded at a certain value,
e.g. 0.5, to obtain the final segmentation.

2.2. Feature weighting

The prediction quality of the kNN method is known to be
highly dependent on how well the features are able to dis-
criminate between two different instances. Since the discrim-
ination is based on the Euclidean distance function, it makes
the kNN classifier to be quite sensitive to presence of redun-
dant, irrelevant, and noisy features. This could possibly be
circumvented by doing dimensionality reduction using fea-
ture selection, as in our previous method [5]. Feature selec-
tion, however, assigns a binary weight to each feature selected
and might be useful for filtering out relevant features, and it
has been shown that if the features vary in their relevance then
classification accuracy can be further improved by using fea-
ture weighting [7].

In this paper, we propose a new and novel feature weight-
ing methodology, which combines feature selection with a
line search method for optimal feature relevance weighting.
As a first step, as in [5], in order to choose the optimal set
of features we employ a feature selection step based on the
heuristic sequential forward floating selection (SFFS) [8].
The performance of SFFS is comparable to the optimal
branch and bound algorithm, while being more computa-

tionally efficient. SFFS translates to a forward selection (FS)
step, followed by backward selection (BS). FS starts from
an empty set and adds features sequentially as long as the
performance criterion improves. Subsequently, BS iteratively
removes the least significant features according to the perfor-
mance criterion. The outcome of the performance criterion is
evaluated at each iteration and we stop iterating when the di-
mensionality of the feature space reaches a point after which
the improvement is not significant. For the performance
criterion, we maximize AUC - the area under the receiver
operating characteristic (ROC) curve. The ROC curve is de-
termined by varying the classification threshold and plotting
the ratio of false positives vs. the ratio of true positives [9].

After the feature selection step, optimal set of features for
a specific structure has been selected; however, each feature
has a binary weight. We propose to find the optimal weight
(relevance) of each selected feature using line search. Line
search methods are typically used to find the minimum value
of a function in one dimension [10]. Since, the line search
is one dimensional, while searching for the optimal weight
for a particular feature, the weights of all other features are
kept constant. This process is repeated for all the selected
features. We repeat the line search step for several iterations
until the optimization criterion cannot be further improved,
where the relevance criterion is maximization of the AUC. If
during line search the criterion is not improved for a specific
feature then its weight remains unchanged. All weights are
initialized to 1. For implementation of line search, we use
Brent’s method [11], which first finds a bracket which con-
tains the desired optima. A bracket is a triple (x, y, z), such
that, AUC(x) < AUC(y) > AUC(z). Once the bracket
is found using interpolation/Golden section method [11], we
iteratively search for the optimal weight.

Fig. 1 illustrates the increase in classification performance
achieved by the same features, selected using SFFS, and then
weighted using line search technique. It shows that for the

Fig. 2. Slice depicting segmentation results of the left parotid.
Left: classified probability map of a sub-volume. Overlaid
on this image are segmentations obtained from our previous
framework by varying the threshold. Right: the ground truth
(green) and the segmentation of our new level-set based seg-
mentation (red) overlaid on the raw intensity image.
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Fig. 3. A variational approach for segmentation of low-contrast structures.

first iteration of the line search procedure the AUC increases
considerably implying the effect of feature weighting and in
successive iterations the AUC reaches to an optimal value.

2.3. Variational segmentation of probabilities

A drawback of the previous formulation is the use of a hard
threshold to obtain the final segmentation whose optimal
choice can vary between different structures. Furthermore,
the threshold is not intuitive and can have an adverse impact
on the segmentation results, see Fig. 2 (left).

Instead of applying thresholds, we propose to use a level-
set formulation, following the approach suggested by Chan
and Vese [12] to obtain the final segmentation. For this pur-
pose, all voxels in the region around (and including) the seg-
mentation obtained by the previous framework are classified
using kNN and the set of selected weighted features, resulting
in a probability map. This probability map is then segmented
using level sets with a shape prior. Fig. 3 gives an illustrative
overview of the proposed method.

Level sets provide an implicit representation of the evolv-
ing contour, which is embedded as the zero level set of a
signed distance function φ (φ > 0 inside and φ < 0 out-
side the contour, and |∇φ| = 1). Two-region segmentation is
performed by minimizing the following functional [12]

Eν(c1, c2, φ) =
∫

Ω

{(u−c1)2H(φ)+(u−c2)2(1−H(φ))+

ν|∇H(φ)|}dxdydz,

where u : Ω → R is the classified probability map, c1 and
c2 are scalar variables which are updated during the level set
evolution, and represent the mean intensity of the two regions
(where φ is positive or negative). H(φ) denotes the Heaviside
function, which is 1 where φ ≥ 0, and 0 otherwise, and ν > 0
is a parameter that controls the smoothness of the evolving
contour.

The above model, however, is purely based on the proba-
bilities present in the map and will fail to segment a meaning-
ful region if the probabilities are less pronounced. We adopt
the model of Cremers et al. [13] which elegantly incorporates
shape information into the Chan-Vese functional. The shape
prior is represented as a signed distance function, φ0 and is
enforced on all the domain Ω by the L2 distance

Eshape(φ) =
∫

Ω

(φ− φ0)2dxdydz,

where φ0 can be respresented as a mean shape, however,
due to high anatomical variability we want the prior to be
in close proximity to the anatomy of the underlying subject.
Therefore, we use the segmentation output from our previous
method, as explained in section 2.1, as the shape prior.

In addition to the shape prior, we also introduce a weight-
ing term, where the weights are probabilities quantified from
the probabilistic atlas (Section 2.1). In this way the distance
function will be penalizing regions of low probabilities, which
is advantageous in situations of distorted shape prior. We
modify the term as

Eshape(φ) =
∫

Ω

(1−m)(φ− φ0)2dxdydz,

where m denotes the probabilistic atlas. Thus, combining the
terms, the segmentation functional becomes

E(c1, c2, φ) = Eν(c1, c2, φ) + λEshape(φ),

where λ ≥ 0 determines the influence of the shape prior term.
As in Chan-Vese’s method [12], minimizing the above func-
tional with respect to φ is implemented by gradient descent

∂φ

∂t
= δ(φ)

[
ν div

(
∇φ

|∇φ|

)
− (u− c1)2 + (u− c2)2

]
−

2λ(1−m)(φ− φ0),

where δ(φ) is the derivative of the Heaviside function H(φ).

3. RESULTS

Image data used for the experiments consisted of head and
neck CT scans of 25 patients acquired at Princess Margaret
Hospital in Toronto, Canada. All datasets were acquired using
a standard field of view and do not contain large neck defor-
mations due to disease. Scan resolution for all datasets was
approximately 1×1×2 mm3. For voxel classification train-
ing, feature selection, and parameter settings for the level-
set formulation, 15 datasets were used, and the remaining 10
datasets were used to validate the method. Both feature selec-
tion and weighting are carried out by randomly dividing the
training data into two subsets. The classifier is trained for a
combination of features on the first set and the performance is
then evaluated on the second set. Note that unlike using non-
intuitive and organ-dependent thresholds to obtain the final
segmentation [5], the parameters in the level-set formulation
do not require tuning for every new case.
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Dataset Brainstem Brainstem L Par L Par R Par R Par L Sub L Sub R Sub R Sub
(DSC) (HD) (DSC) (HD) (DSC) (HD) (DSC) (HD) (DSC) (HD)

1 0.89 3.1 0.81 4.3 0.74 7.4 0.82 3.0 0.69 5.0
2 0.91 2.9 0.78 7.9 0.84 4.0 0.73 5.2 0.66 5.1
3 0.86 3.3 0.84 3.8 0.84 5.6 0.80 4.2 0.80 4.8
4 0.91 2.9 0.89 3.5 0.90 4.0 0.85 3.5 0.85 3.7
5 0.87 2.1 0.82 4.1 0.83 6.2 0.78 5.9 0.73 6.5
6 0.91 2.2 0.86 6.4 0.84 8.0 0.87 2.5 0.84 2.8
7 0.90 3.9 0.87 4.4 0.83 6.9 0.82 4.9 0.81 5.7
8 0.91 2.2 0.83 7.0 0.81 5.9 0.84 2.9 0.75 5.2
9 0.91 2.8 0.88 3.5 0.87 4.0 0.86 3.3 0.85 3.5
10 0.90 2.9 0.89 3.9 0.88 4.9 0.84 3.5 0.85 4.2

Mean 0.90 2.8 0.85 4.9 0.84 5.7 0.82 3.9 0.78 4.6

Table 1. Segmentation results: the table lists the DSC, and the median HD (mm) of our approach vs. expert segmentations.
Mean DSC overlap and average median HD distance (last row). Left(L), Right(R), Par(Parotid), Sub(Submandibular gland).

To quantitatively evaluate the resulting segmentations, we
compare them to the manual segmentations done by a clin-
ical expert. The evaluation is carried out by estimating two
common measures on 10 datasets: volume overlap fraction or
the Dice similarity coefficient (DSC), and a geometrical met-
ric, the Hausdorff distance (HD), which is evaluated slice-
wise. Table 1 lists these quantitative measures for all struc-
tures. Compared with the results of the previous approach [5],
an improvement in volume overlap of around 7% has been
achieved for the brainstem, 18% for the left and 22% for the
right parotid. Quantitative validation for the submandibular
glands has been done for the first time in the present paper,
so no direct comparison with the previous approach can be
made, but taking their fuzzy visual appearance in CT data
into account, current results can be considered as promising.

4. CONCLUSION

We have proposed a variational scheme by enhancing our pre-
vious approach for segmentation of low contrast structures in
the head and neck region. We segment voxel classified prob-
ability maps by extending the Chan-Vese functional to incor-
porate weighted shape prior information. The primary advan-
tage of our approach is that it removes the reliance on organ-
specific user based thresholds, which are difficult to select due
to high anatomical variability. Our results demonstrate that
when compared to the old methodology we are able to achieve
superior segmentation accuracy. Future work will involve a
multi-center validation study incorporating more structures in
the head and neck region.
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