
Automatic 3D graph cuts for brain cortex segmentation in patients with
focal cortical dysplasia
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Abstract— In patients with intractable epilepsy, focal cortical
dysplasia (FCD) is the most frequent malformation of cortical
development. Identification of subtle FCD lesions using brain
MRI scans is very often based on the cortical thickness
measurement, where brain cortex segmentation is required as
a preprocessing step. However, the accuracy of the selected
segmentation method can highly affect the final FCD lesion
detection. In this work, we propose an improved graph cuts
algorithm integrating Markov random field-based energy func-
tion for more accurate brain cortex MRI segmentation. Our
method uses three-label graph cuts and preforms automatic
3D MRI brain cortex segmentation integrating intensity and
boundary information. The performance of the method is tested
on both simulated MR brain images with different noise levels
and real patients with FCD lesions. Experimental quantitative
segmentation results showed that the proposed method is effec-
tive, robust to noise and achieves higher accuracy than other
popular brain MRI segmentation methods. The qualitative
validation, visually verified by a medical expert, showed that
the FCD lesions were segmented well as a part of the cortex,
indicating increased thickness and cortical deformation. The
proposed technique can be successfully used in this, as well as
in many other clinical applications.

I. INTRODUCTION

The latest studies indicate that one out of two hundred
adults suffer from recurrent epilepsy [1]. About 30% of
them are due to focal cortical dysplasia (FCD), which is
a malformation of the cortical development in the brain. In
clinical treatments, the FCD lesions often have to be removed
by surgery and before this can be done, it is necessary to
detect and delineate the lesions. However, FCD detection
is a very challenging task and standard radiological MRI
evaluation of the lesions still fails in many cases, because
of the complexity of the cortex and subtle behavior of the
lesions. Therefore, developing an automatic algorithm for
FCD detection would be a very useful tool for clinical
diagnoses and surgical planning.

On MRI scans, FCD lesions are typically characterized
with the increased cortical thickness, blurring of the gray-
white matter interface and hyperintensity signal in the lesion
area. Examples of T1-weighted (T1-W) MR images with
FCD lesions are shown in Fig. 1.

To date, several methods have been reported for detection
and visual improvement of FCD lesions [2]–[5]. Very often,
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Fig. 1. Three examples of T1-weighted MRI with FCD lesions. The lesions
are indicated with a circle. They are characterized by increased cortical
thickness and blurring between gray matter and white matter.

the MRI scans are first preprocessed by removing skull,
lipid layers and intensity inhomogeneity. Then, the maps
of the three main FCD features are calculated: cortical
thickness map, gradient map and relative intensity map.
Cortical thickness measurement requires MRI to be seg-
mented into: gray matter (GM, cortex), white matter (WM)
and cerebrospinal fluid (CSF). Importantly, the final FCD
detection results highly depend on the accuracy of the brain
cortex segmentation, which is the focus of our work.

In general, accurate MRI brain cortex segmentation is a
difficult task, not only because of the complicated structure
of the brain and the anatomical variability between subjects,
but also because of the presence of noise and low contrast
between brain tissues in MRI. Since manual segmentation is
time-consuming, prone to errors and subjective, automated
and accurate tissue segmentation is needed.

Currently, the most popular methods used for brain cortex
segmentation are the histogram-based method with auto-
mated threshold (HBM) [3], FMRIB’s Automated Segmen-
tation Tool (FAST-FSL) [6], Statistical Parametric Mapping
(SPM) [7], Fuzzy C-Means (FCM) [8] and graph cuts [9],
[10]. While most of these methods are suitable for general
brain tissue segmentation, HBM is used in the vast majority
of FCD detection techniques. The main disadvantage of the
HBM method (as well as of the standard FCM method)
is high sensitivity to noise and other imaging artifacts. In
contrast, the FSL, SPM and graph cuts methods are less
sensitive to noise because they include the spatial information
of the neighboring pixels in the image segmentation. How-
ever, most of the segmentation techniques reach only local
optimum in their stated energy function, while the graph
cuts method is able to locate global minima for two-label
energy functions and strong approximation to global minima
for multi-label energy function [9], [11]. In this work,
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Fig. 2. Overview of the graph cuts segmentation for a 2D image with 3x3 pixels. In the first step, the two different types of edges of the graph
are presented. The second step shows the complete graph. The edges between voxel nodes are initialized with weights that are calculated based on the
smoothness properties (MRF and gradients). The weights for the edges between voxel nodes and labels are based on the data properties (intensity model).
This is followed in the third module by the computation of an approximate multi-way cut, which results in a near global optimal segmentation.

we propose an improved graph cuts algorithm minimizing
Markov random field-based (MRF-based) energy function
for automatic brain cortex segmentation. Compared with
previously proposed methods [10], [12], we do not use brain
atlases for tissue segmentation (because we do not segment
detailed brain structures) and our method is based on a three-
label (WM, GM and CSF) brain segmentation using T1-W
MRI scans, implemented in 3D (3DGC).

The paper is organized as follows: In Section II the
proposed MRI segmentation algorithm is explained. Results
are given in Section III and Section IV concludes this paper.

II. METHOD

Our technique is based on the graph cuts method proposed
by Boykov and Jolly [9], [11]. They formulate segmentation
as a problem of energy minimization, which can be solved
by calculating the minimum cost cut in a graph, equal to the
total energy of the corresponding segmentation.

Segmenting an image I into homogeneous regions of
interest can be described as assigning a label lp ∈ L to each
voxel p ∈ I . A graph cuts MRF-based energy function E(l)
is formulated as:

E(l) = λ
∑
p∈I

Dp(lp) +
∑

p,q∈N

Vp,q(lp, lq), (1)

where Dp(lp) is the data penalty function and measures how
well the label lp can be assigned to the voxel p based on
observed data intensities and a chosen probabilistic model.
The smoothness term Vp,q(lp, lq) (interaction potentials)
measures the neighborhood interaction by penalizing dis-
continuities between neighboring voxels pairs in a specified
neighborhood system N . Parameter λ controls the relative
importance of the data term with respect to the smoothness
term. To optimize Eq. 1, a graph G = 〈V,E〉 consisting of
set of nodes v ∈ V and set of direct edges e ∈ E is defined
on image I . The nodes consist of image voxels and spacial
terminal nodes (labels) Li. There are two types of edges E
defined on graph G: edges between each voxel node and
terminal nodes and edges between neighboring voxels.

Here, we used an extended three-label graph cuts method
where three terminal nodes Li ∈ {LCSF , LGM , LWM} refer

to the three brain tissue types: CSF, GM and WM. The
flow of the corresponding graph construction is illustrated in
Fig. 2. For simplicity, an example is given for a 2D image
with 3 × 3 pixels. The first step involves the creation of
the graph with two different set of edges. The first type
of edges connect each voxel node v with each terminal
node Li and the second type of edges are those between
two neighboring voxels in the defined neighbourhood sys-
tem. This information corresponds to penalizations (costs or
weights) on the edges and is computed based on an intensity
model for the data term and additional gradient image for
the smoothness term. The created graph is a three-terminal
graph, shown in the second step. An optimal balance will be
achieved by minimizing the energy function for all possible
segmentations. The third step presents this minimization, that
consists of the computation of an approximate multi-way cut.

The data properties are integrated by assuming a Gaussian
mixture model (GMM) as intensity model. A GMM is fitted
to the voxels intensity using the expectation-maximization
(EM) algorithm [13]. In this way, the partial volume effects,
that occur at the boundaries between tissues, are also taken
into account. After the Gaussians are calculated, we have
for each intensity value the probabilities of belonging to the
three tissues PI(Ip|Li). The data term Dp(Li) for a given
label Li is defined as the negative log-likelihood of the image
intensity distribution,

Dp(Li) = − lnPI(Ip|Li). (2)

The smoothness term Vp,q is based on the intensity as well
as on the image gradient Cx, constraining the shape of the
cortex:

Vp,q = c ·
(
exp

(
− (Ip − Iq)2

2σ2

)
· 1

dist(p, q)

)
+ (1− c) ·

(
1− max

x∈Np,q

(Cx)

)
. (3)

Parameter c controls the contribution of the boundary and
intensity based parts. When c = 1, only the intensity
discontinuity part has an influence and when c = 0, only
the gradient term has an influence.
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The first term in Eq. 3 penalizes intensity discontinuities
and is based on the MRF. For every voxel in the brain
volume, edges are positioned between the voxel and all its
neighbouring voxels according to the chosen neighbourhood
system. The weights are calculated by this first term, which
consists of the squared intensity difference between the two
voxels (Ip − Iq)2, the intensity variance over the whole
volume σ2 and the distance dist(p, q) between both voxels.
When the intensity difference is small, the weight will be
large and vice versa. Consequently, the voxels with similar
intensity values will less likely be separated from each other
because the cost will be higher. Similarly, the voxels with
largely differing intensities will be faster separated. The
variance σ2 is included to adapt between images with overall
strongly differing intensity values and those with overall less
differing intensity values. Finally, taking the spatial distance
between neighboring voxels into account ensures that voxels
that are further away contribute less to the neighbourhood
system of the considered voxel.

The second term in Eq. 3 makes use of the image gradient
Cx to constrain the shape of the cortex. The image gradient
is computed for each voxel using the same neighbourhood
system as is used in the first term. Afterwards, the mean
gradient for the considered voxel is calculated. In the com-
putation of the weight between two neighbouring voxels, the
maximum mean gradient of the two voxels is used. By using
the mean gradient, we reduce the noise influence.

III. RESULTS

The performance of the proposed brain cortex segmenta-
tion method is validated quantitatively using brain phantom
data and qualitatively using 8 real patients. In both cases
only T1-W MRI volumes are used.

A. Quantitative validation

To validate the method quantitatively, we need images
with known “ground truth”. Thus, we used the simulated
MR images from the realistic brain phantom, BrainWeb
[14] (181 × 217 × 181 voxel matrix with a resolution of
1mm× 1mm× 1mm). The results of our method (3DGC)
were compared with the four methods: FSL, SPM, HBM
and FCM. The Dice coefficient (ρGM) is used as a similarity
measure.

ρGM =
2|Ai

⋂
Bi|

|Ai|+ |Bi|
, (4)

where Ai and Bi denote the set of pixels labelled into i by
the “ground truth” and segmentation method respectively,
and |Ai| denotes the number of elements in Ai. The dice
coefficient was calculated as the mean value for the whole
phantom volume. For the FSL and SPM the parameters were
chosen to give the highest ρGM.

The segmentation results for four noise levels are shown
in Fig. 3. The results show that our method 3DGC has higher
ρGM values than the FSL, SPM, HMB and FCM for a range
of different noise levels. Only for the lowest noise level, the
HBM and FCM score higher.

Noise level

(c=0.4,α=5, N=18) 

Fig. 3. The similarity measure ρGM of the brain cortex segmentation
using the 3DGC, FSL, SPM, FCM and HBM methods for 4 different noise
levels. In general, the 3DGC performs better than other methods, especially
for higher noise levels.

Noise level

Fig. 4. The similarity measure ρGM of our method using 2D and 3D
segmentation. We clearly see that the 3D segmentation gives better results
for all considered noise levels.

In Fig. 4 we show that 3D graph cuts segmentation per-
forms better than 2D (slice by slice) graph cuts segmentation.
The similarity measure ρGM for every slice in the phantom
volume is shown in Fig. 5. The graph shows a line for each
of the noise levels.

Slice number

Fig. 5. The similarity measure ρGM of the 3DGC method for all slices of
the phantom volume, for different noise levels. We see that ρGM is stable
over a wide range of slice numbers, but drops in the higher regions of the
brain.

Fig. 6 visualizes results of different segmentation methods
of the phantom slice number 90 with the highest noise level
(0.09). This is to illustrate the robustness of the different
methods to noise. It is clear from Fig. 6 that the HBM and
FCM have a lot of noise artifacts. The SPM shows less noise
artifacts, while the FSL and 3DGC are most robust to noise.
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7 Fig. 6. The resulting segmentation of the phantom slice 90 with the highest
noise level (0.09) is shown for the 4 different methods. The 3DGC and FSL
show the closest resemblance to the ground truth, while the HBM, FCM
and SPM retain more noise artifacts.

B. Qualitative validation

The qualitative validation was performed on 8 real patients
with FCD lesions. The MRI were recorded at Ghent Univer-
sity Hospital on a Siemens 3T MRI scanner (256×256×176
voxel matrix with a resolution of 1mm×1mm×1mm). The
MRI were preprocessed by removing skull, lipid layers and
bias field. The cortex segmentation is visually evaluated by
expert physician. In all cases the segmentation was successful
and the lesions were segmented as part of the cortex. The
segmentation results are shown in Fig. 7 for four patients.
The original MRI slice is shown at the left side with a
rectangle around the lesion. At the right side, the segmented
slice is shown in a similar way.

10 

Fig. 7. The cortex segmentation results for four different patient are shown
in each row. The original MRI slice is shown at the left and the resulting
slice after segmentation with the 3DGC is shown at the right.

IV. CONCLUSION

We propose an improved technique for automatic 3D
brain segmentation based on the graph cuts algorithm and
MRF. Based on the quantitative validation, the proposed
3DGC method outperforms the popular brain segmentation
techniques for a wide range of noise levels. Experimental
results with different MRF neighbourhood systems showed
that the 3D segmentation outperforms the 2D segmentation.
The qualitative validation indicated the ability of the 3DGC
to successfully segment the FCD lesions as a part of cortex,
even when the λ parameter is not precisely tuned to the
image. The results are very encouraging and demonstrate
that the 3DGC can improve the FCD lesion detection and be
successfully applied in many other practical applications. In
future work, we will incorporate the multi-modal intensity
information, from T1-W and Core Flair MRIs, to improve
the performance of the 3DGC method.
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