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Abstract— The segmentation of three-dimensional vascular
trees is an important topic in medical image processing.
Although it may seem to be an easy task, many different
techniques have been proposed in the literature during the last
decade and many difficulties remain. One can wonder why the
human eye is usually able to understand the connectivity and
the topology of the different structures while most algorithms
fail to do so. In this paper, we propose an original approach
that classifies the different contours by applying a geodesic
distance transform on the contours of the vessels, where the
evolution speed depends directly on the maximal curvature of
the contours. This proposition comes from the observation that
the maximal curvature on a standard vessel is usually positive
and almost constant while it approaches zero or becomes
negative on the contour at the contact with other structures. We
describe our method in details and present promising results on
synthetic and real images, where the method has been able to
detect complex vascular structures without leaking into bones
or mixing different vascular networks.

I. INTRODUCTION

The segmentation of vascular structures is a fundamental
step for many applications in medical image processing,
among them are endovascular surgery planning and sim-
ulation, diagnosis of vascular diseases like aneurysms and
stenosis. It can also help in surgery like liver resection, or in
the brain to avoid damaging important vessels. In some cases
where the contrast of the vascular structures is good and they
are isolated from other structures of similar intensities, their
segmentation can be relatively easy and many algorithms can
obtain satisfactory results. However, in general, this process
is more difficult than it seemed to be. Figure 1 depicts
complex arteries and veins trees, using Volume Rendering
from a Computed Tomography Angiography (CTA) of the
neck. One of the difficulties in the segmentation process is
to separate the different vascular structures and to avoid leaks
into non vascular structures like bones.

A. Previous work

Reviews on vascular structures segmentation are pre-
sented in [1], [2], [3]. Among the different techniques
are methods for enhancing and detecting the vessels
centerlines, based on linear multiscale analysis [4], [5]
and on minimal cost path [6], methods based on the
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level-set active contour evolution [7], [8], [9], meth-
ods based on statistical framework, on graph cuts algo-
rithms [10], particle filters and template matching [11].

Fig. 1. Interwoven vascular trees.

The diversity of the proposed
methods and the number of
publications demonstrate the
level of difficulty to obtain
a robust and reliable tech-
nique with minimal or no
user-interaction. Despite the
quality of the different re-
views to describe the current
literature on this topic, the
comparison of several meth-
ods is a difficult task and sev-
eral challenges have been organized to compare 3D vascular
segmentation techniques on CTA of Coronary arteries [12],
and Carotid bifurcation [13]. While these two challenges pro-
posed to compare methods from several categories: manual,
semi-automatic and fully automatic methods, most of the
proposed methods fall within the semi-automatic category
where the experts have selected a seed point within the
main vascular trunk and other points within each branch
of the desired three-dimensional vascular tree. Despite the
initial points selected by the physicians, the task of extracting
the path of the vascular tree prove to be difficult in many
cases due to the complexity of the vascular networks, to
interwoven vascular trees, to calcifications and stenosis and
vascular anomalies, variations between patients and tortu-
osities. However, when interactively looking at a volume
dataset using a volume or surface rendering with adequate
parameters, the human observer is usually able to follow the
correct path of the vascular structures. This can be explain
by the a priori understanding of the tree structure, including
the notion of branching, stenosis, calcification and continuity
within the 3D vessels contours which allow the observer to
understand the three-dimensional scene. In this work, we
introduce an new algorithm that helps understanding the
three-dimensional structures of the vessels by taking into
account the continuity of their contours. One of the main aim
of this algorithm is to be able to separate and partition several
interwoven vascular tree, enabling a better understanding
of the patient scan that could be used for visualization,
quantification or any posterior image processing task.

II. METHODOLOGY

The proposed method is based on the observation that
the distribution of the maximal curvature along the con-
tours of the vessels gives a strong hint on the presence of
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close or touching structures that don’t belong to the current
tracked vessel. Based on this observation, we design an
algorithm that first computes the voxels belonging to the
vessels contours, then, starting from several manual initial
points within the contours of distinct tubular trees, we evolve
competing fronts within the contours and using a maximal
curvature based propagation speed, until reaching a given
maximal evolution time. As a result of this process, we
obtain several connected sets of contour voxels where each
set should belong to a different vascular structure if the speed
function has accomplished its function, which is to prevent
evolution of the front at the contact between the different
structures. These different sets of voxels are then processed
to create several three-dimensional representations of each of
the recognized vascular structures, depicting a partitioning of
the contours.

A. Distribution of the principal curvatures on the contours

The principal curvatures at any voxel with non-zero gradi-
ent of the image are defined as the principal curvatures of the
iso-surface passing through this voxel. If one defines a unit
vector in the plane orthogonal to the gradient at the current
voxel, this vector and the gradient vector form a plane that
cuts the isosurface into a curve with a given curvature at the
current voxel. The orientations that give the maximal and
the minimal values of this curvatures are orthogonal, and
are named the maximal and the minimal directions of curva-
tures respectively and their corresponding curvatures are the
maximal and the minimal curvatures at this voxel. We define
the interior of the object as the bright side of the isosurface,
and convex object are defined with positive curvatures while
concave object will have negative curvatures. The principal
curvatures (resp. the principal directions of curvature) can
be obtained as two of the eigenvalues (resp. eigenvectors) of
the following matrix:

H ′ =
−1
‖∇σu‖

PHσP with P = I − η∗η∗t,

where Hσ is the Hessian matrix of the smoothed image
obtained by convolution of the image with derivatives of
the Gaussian kernel of standard deviation σ, I is the identity
matrix in 3D, and η∗ is a unit vector in the gradient direction
η∗ = ∇σu

‖∇σu‖ (also obtained from Gaussian convolution).
One of the eigenvectors of this matrix is the gradient of
the smoothed image with a zero associated eigenvalue, and
the two others are the principal curvature directions. We
will be denote κmin and κmax the two principal curvatures
so that κmin is lower than κmax in absolute value, i.e.
|κmin| ≤ |κmax|. It is interesting to look more closely at the
distribution of the principal curvatures on the surface of tubu-
lar objects and tubular trees. Figure 2 depicts the principal
curvatures of several synthetic tubular structures, computed
on three-dimensional synthetic datasets and displayed in
colors on the contours of the studied objects. A rainbow
colormap has been selected to represent the values of the
principal curvatures within a range of [-0.5,0.85] which is a
relevant range of values for our applications. As expected, in

Maximal curvature Minimal curvature
Fig. 2. Look-up Table and principal curvatures on synthetic tubular images.

the case of a circular straight cylinder, the maximal curvature
reflects the inverse of the cylinder radius and the minimal
curvature is zero at every location of the contours. Note that
the principal curvatures are well defined at the object contour,
where the image gradient is high, and are ill-defined at the
center of the vessels where the gradient passes through zero.
In the cases of torus with different curvatures, the maximal
curvature still represents the inverse of the cylinder radius,
while the minimal curvature on the contour is ranges from
negative (inner part) to positive values (outer part) depending
on the location on the contour. Vascular junctions create
discontinuities with lower values of both curvatures on part
of the junction, at some location of the surface junction, the
maximal curvature can even become negative. In the case
of our synthetic stenosis, the maximal curvature increases
due to the lower radius of the tube at the stenosis, while
the minimal curvature becomes negative due the concavity.
The lower row of fig. 2 depicts the case of tangent tubular
structures. In this case and in general for tangent structures
involving tubular shape, the area of contact on the contours
between the two different structures depicts negative values
of the maximal curvature while the minimal curvature can
have positive or negative values in this area. As a conclusion
and based on these observations, we use only the maximal
curvature to track the topology of the vascular networks on
their contours and we will assume that the contact between
a three dimensional vascular networks and another structure
will create a closed curve of negative values of the maximal
curvature, allowing to separate the different structures, while
there will usually exists a path of non-negative maximal
curvatures values between any two locations of positive
maximal curvatures on the same vascular tree. Although this
assumption may not be fulfilled in all cases, we will use
it as a base to develop an algorithm that is able to split a
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vascular tree from other structures and facilitate the posterior
segmentation and understanding of the volumetric data. In
fig. 3, we display the results of computing the maximal
curvature, using the same colormap as in fig. 2, on two
different real CTA volumes of the abdomen (left) and of the
Carotid arteries (right). Since the aorta on the left image is a
vessel with a big diameter, the curvature was calculated using
a Gaussian standard deviation of 2 to reduce the noise and
the possible negative maximal curvatures that it can create
on the vessel surface. In both images, we can notice that our
hypothesis on the distribution of the maximal curvature is
fulfilled. On the carotid image at the right, the negative values
of the maximal curvature at the contact between different
vascular structures or between vascular structures and bones
are clearly rendered.

Fig. 3. Maximal curvatures on real data sets of the Aorta and the Carotid.

B. Design of the propagation speed

We choose to apply the following function to the maximal
curvature value κmax:

Wκ(κmax) =


0 if κmax < l1,
l2 if l1 <= κmax < l2,
κmax if l2 <= κmax < h,
h if κmax >= h,

(1)

where l1, l2 and h are set respectively to -0.2, 0.01, and
1. Which means that we completely prevent the front from
evolving at values lower than -0.2, we allow very slow
evolution between -0.2 and 0.01, we allow an evolution
proportional to the maximal curvature for values between
0.01 and 1 and we clamp the maximal speed to 1 for maximal
curvatures higher than 1. This choice of evolution speed
allows to demonstrate the utility of the proposed method,
even though other functions could be used in this case.

C. Implementation details

The propagation of the different fronts has been imple-
mented using the Fast Marching [8] method directly on
the three-dimensional volume. Another option is to evolve
on a precomputed mesh that would include the contours
of interest. For the purpose of our method, we need a
selection of the voxels located at the image contours, and
if possible, mainly at the contours of vascular structures.
We use the local maxima of local image intensity variance
as a characteristic of the contours, since it can directly be
related to the properties of the noise in the image while
the variability of image gradient magnitude is more difficult
to apprehend. The calculation of the local variance of the

image intensity is weighted by a Gaussian kernel, and then
its expression can be computed as:

Vσ(I) = Gσ ∗ I2 − (Gσ ∗ I)2. (2)

This expression, as compared to using a box-like neighbor-
hood, introduces a continuous scale parameter σ, which is
set to 0.7 voxel in our experiments.
A simple procedure based on linear interpolation is used to
extract the local maxima of Vσ in the direction of the image
gradient, this procedure consists in computing the image
gradient ∇σI from convolution with Gaussian derivatives,
and in selecting the voxels whose intensity is higher that
their two neighbors in the direction of the gradient and at a
distance of half a voxel:

Vmax(x) = Vσ(x) if
{
Vσ(x) > Vσ(x + ξ

2 ) and
Vσ(x) > Vσ(x− ξ

2 )
0 otherwise,

(3)

where ξ = ∇σI
‖∇σI‖ . The advantage of limiting the evolution of

the voxels of the contour is to limit the risk of leakage of the
front, however, the Fast Marching algorithm is not especially
designed to evolve on a thin surface but on a volume, so we
add one layer of voxels around the selected contour voxels on
the side of the gradient (since vessels are usually brighter that
their background). The resulting image, where the selected
voxels at or close to the contours have a value of 1 and the
other voxels a value of 0, is denoted M .

M(x) =

 1 if Vmax(x) > 0 or(Vmax(x− ξ/2) > 0
and I(x + ξ/2) ∈ [Imin, Imax]),

0 otherwise;
(4)

where [Imin, Imax] is the a user-defined intensity range of the
vessel intensities, this way we can pre-select contours that
contains on their higher intensity side a possible vascular
intensity value.
An interesting feature used to remove noise or to detect edges
is the coefficient of variation, based on the local statistics
of the image [14]. In our case of CTA data, we will make
the hypothesis that the noise is uncorrelated, additive and
Gaussian of zero mean and standard deviation σn, which
can be estimated from a region of the same tissues within
the image. In this case, we can estimate the local variation
of the image intensity without noise as var(f) = var(g)−
σ2
n, where g = f + n is the observed signal and f is the

theoretical signal without noise. We define a term for the
propagation speed based on the local statistics as the ratio
between the local variance of the image without noise and
the local variance of the observed image, this propagation
term, denoted Sc, is written as:

Sc = max(0, Vσ − σ2
n)/Vσ. (5)

Our final evolution speed image, denoted F , is defined as
the product of the three images previously defined:

F = Wκ(κmax)× Sc ×M. (6)

Starting from n user defined initial seed points, the eikonal
equation ‖∇T‖ = F is solved up to a maximal time Tmax
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and keeping track of the closest initial point in the geodesic
distance sense for each computed voxel value of the evolution
time image T . The result is a partition of the contours
in n components that should ideally contain only contours
of same vascular trees. Polygonal meshes representing the
local maxima of Vσ are extracted from the zero-crossings of
the scalar product ∇Vσ.∇σI within each classified contour
component and they are rendered in 3D with different colors.

III. RESULTS

Figure 4 shows the result of applying the proposed tech-
nique a neck CTA. The user initially selected three points
on contour of the Common Carotid Artery (in red), of the
Internal Carotid Artery (in orange), and of the Jugular Vein
(in blue). Each of the point has evolved with the contour
voxels and the algorithm has been able to separate correctly
the jugular vein from the different arteries at the several
locations of contact. It has also been able to avoid entering
bones that come into contact with the jugular vein at the
top of the image. Due to a strong stenosis, the branching
of the common carotid artery into the external and the
internal carotid artery has not been fully reconstructed, but
the algorithm has fulfilled its purpose, which is to separate
different vascular networks. Figure 5 depicts the result of the
algorithm on a selected sub-volume of 293×255×944 voxels
from an abdominal CTA, where three initial seed points have
been selected, two of them in the aorta and one in the heart.
The algorithm has been able to grow within the vascular
network without leaking into the bones from the hip or
the vertebral column, permitting a good visualization of the
vascular tree. Moreover, the contours of the heart and of the
pulmonary vessels have been detected separately, allowing a
visualization of the dissected aorta alone.1

Fig. 4. Contour segmentation from neck CTA starting from 3 points.

IV. CONCLUSIONS AND FUTURE WORKS

We have proposed and described a novel approach to
partition the contours of vascular structures from three-
dimensional data sets, with the aim of separating interwoven
tubular networks and to avoid leakage from a vessel to other
touching structures. Our technique relies strongly on the
properties of the maximal curvature along the contours of
tubular structures and especially on the fact that it becomes
negative at the contact with other structures while there
exists a path of non-negative maximal curvature values
within different location of the contours of the same vascular

1All the figures have been generated using AMILab (http://amilab.org).

Fig. 5. Contour segmentation on thoraco-abdominal and pelvic CTA
starting from 3 points. The heart and the pulmonary vessels are separated
from the aorta in a patient dissection in the thoraco-abdominal aorta.

network. Our first results on neck and abdominal datasets,
displaying highly interconnected and complex networks are
very encouraging. Future works include an automatic selec-
tion of the seed points and a full segmentation of the detected
vessels including the lumen inside the detected contours.
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