
  

  

Abstract—Trigger finger is a common hand disease, causing 
swelling, painful popping and clicking in moving the affected 
finger joint. To better evaluate patients with trigger finger, 
segmentation of flexor tendons from magnetic resonance (MR) 
images of finger joints, which can offer detailed structural 
information of tendons to clinicians, is essential. This paper 
presents a novel model-based method with three stages for 
automatically segmenting the flexor tendons. In the first stage, a 
set of tendon contour models (TCMs) is initialized from the most 
proximal cross-sectional image via two-step ellipse estimation. 
Each of the TCMs is then propagated to its distally adjacent 
image by affine registration. The propagation is sequentially 
performed along the proximal-distal direction until the most 
distal image is reached, as the second stage of segmentation. The 
TCMs on each cross-sectional image are refined in the last stage 
with the snake deformation. MR volumes of three subjects were 
used to validate the segmentation accuracy. Compared with the 
manual results, our method showed good accuracy with small 
average margins of errors (within 0.5 mm) and large 
overlapping ratio (dice similarity coefficient above 0.8). Overall, 
the proposed method has great potential for morphological 
change assessment of flexor tendons and pulley-tendon system 
modeling for image guided surgery. 

I. INTRODUCTION 
HE human hand, which is capable of carrying out 
complex tasks, such as object grasping, is the epitome of 

an essential anatomical structure. Unfortunately, long-term 
activities or heavy loads may lead to irritation of the flexor 
tendons in finger joints. While the irritation becomes serious, 
nodule or thickening may be developed on the tendons, 
producing non-smoothness or even pain when the tendons 
pass through the pulleys. A trigger finger also known as 
stenosing tenosynovitis then occurs. Recently, the trigger 
finger has become a common hand problem. To provide 
better evaluation and diagnosis for patients with trigger finger, 
segmentation of the flexor tendons from magnetic resonance 
(MR) images of finger joints, which can offer detailed 
structural information (e.g., size of tendon) to clinicians, 
hence becomes an important issue. 

As a finger joint is a quite small region, near which rigid 
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(e.g., phalanges) and soft tissues (e.g., tendons, sheaths, 
pulleys and ligaments) are located, segmentation of the flexor 
tendons in finger joints from MR images usually suffers from 
susceptibility artifact and partial volume effect [1]. These 
artifacts lead to some difficulties in segmenting MR tendon 
images. For example, fuzzy boundaries between tendons and 
their surrounding tissues make it difficult to precisely capture 
the tendon boundaries. Moreover, several irrelevant tissues 
(e.g., ligament and vessel) with similar intensity to tendons’ 
may perplex the automatic identification of tendon regions.  

According to our trials, purely pixel classification-based 
and region-based methods [2][3], which consider intensity 
characteristics only, are insufficient for handling these 
difficulties. In contrast, deformable model-based methods 
usually incorporate the prior shape knowledge of a target 
object with image intensity information into the segmentation 
process. They are thus supposed to be ideal for MR tendon 
image segmentation. Kaus et al. [4] proposed using a 
deformable model-based method to automatically construct 
the point distribution model from a set of segmented 
volumetric images. Their method measured the degree of 
shape distortion from a reference mesh to constrain the model 
deformation, and thus achieved the segmentation stably. 
Sotoca et al. [5] adopted the statistical shape model to 
constrain the segmentation process to handle the difficulty of 
fuzzy boundary in hand X-ray images. Yet, these methods 
require manual adjustment, which is tedious and operator 
dependent, to provide the model with a proper initial 
condition for avoiding being trapped in the local optima. 

Automatic initialization for deformable model-based 
segmentation is often thought of as an application-dependent 
issue. Recently, Yu et al. [6] and Chen et al. [7] proposed 
using Hough transform and articulated registration for fetal 
head and hand bone segmentations respectively, to 
automatically obtain good initial models. Compared to the 
tendons in finger joints, there is quite large variability in 
either shape of target tissues or geometric relationship 
between neighboring tissues, so the previously developed 
methods may not be applicable. To the best of our knowledge, 
the issue in automatic segmentation of the flexor tendons in 
finger joints has not been well addressed in other research yet.  

In this paper we propose a novel model-based method for 
automatically segmenting the flexor tendons from the MR 
images of finger joints. The proposed method consists of 
major features as follows. First, we design a two-step ellipse 
estimation approach to achieve automatic initialization of 
tendon contour models (TCMs). Second, we present a 
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contour model propagation strategy, which effectively 
compensates the changes in position, orientation and scale of 
flexor tendons between adjacent cross-sectional images, to 
provide the subsequent snake deformation with a good initial 
condition. Third, prior shape knowledge of tendon structures 
is incorporated in the segmentation process for avoiding 
excessive tendon shape distortion. Overall, the proposed 
method can overcome the aforementioned difficulties in 
segmenting MR tendon images, thus achieving promising 
segmentation results. 

II. INITIALIZATION OF TENDON CONTOUR MODELS  

A. Region of Interest Identification in MR Axial Image 
We can observe from MR axial images of finger joints that 

the flexor and extensor tendons are very similar in shape and 
intensity (see Fig. 1a). Identifying a region of interest (ROI), 
which includes the flexor tendons and excludes the extensor 
tendons, is supposed to be a helpful step for avoiding 
confusion in the subsequent segmentation process. From an 
anatomical point of view, the flexor and extensor tendons are 
located at the palmar and dorsal sides of the hand, 
respectively. Such anatomical knowledge is used to obtain 
the desirable ROI. 

At first, some fundamental image processing techniques 
including thresholding, morphological closing operator and 
connected component searching are adopted to extract the 
hand region (indicated by the white region in Fig. 1b) from 
the most proximal cross-sectional image. Then, the ROI for 
flexor tendon segmentation is specified by the region 
enclosed by the blue curve in Fig. 1b. The distances, from the 
left border of the ROI to the left margin of the image, and 
from the right border of the ROI to the right margin of the 
image, are set to one-eighth of the image width. The bottom 
border of the ROI is represented by the palmar-side boundary 
of the hand region, and the top border is obtained by shifting 
the bottom border with one-fifth of the image height toward 
the dorsal side of the hand.  

B. Two-step Ellipse Estimation 
Since the tendons in MR axial images are usually elliptic in 

shape, an ellipse is ideal for approximating their shape and 
position. In the proposed system, four tendon contour models 
(TCMs) are utilized to segment the tendons in four finger 
joints. Each TCM is initialized by estimating an ellipse, 
which is close to the flexor tendon on the most proximal 
image as much as possible. The pose of an ellipse is specified 
by several parameters, including lengths of major and minor 
axes, X- and Y-coordinates of center, and a tilt angle. We 
present a two-step ellipse estimation approach below based 
on the low-intensity property of tendons on MR images. 

The two-step ellipse estimation approach first find the 
parameters of each TCM with respect to the horizontal 
direction, and then apply them as a spatial constraint to derive 
the other parameters on the vertical direction. In the first step, 
we  count  the  pixels  with  intensities  less  than  twenty-five 
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Fig. 1. Initialization of tendon contour models; (a) original MR axial image; 
(b) ROI of flexor tendons; (c) counting result in the first step of ellipse 
estimation; (d) initialized TCMs. 
 
along each vertical line in the ROI. Fig. 1c shows the 
counting result, wherein the horizontal and vertical axes 
indicate the X-coordinate of the image and its corresponding 
number of counted pixels, respectively. It can be observed 
that the clusters bounded by the red dashed lines match to the 
flexor tendons, while the other smaller-sized clusters 
correspond to the vessels. In our experiments, the criterion to 
determine whether a cluster represents a tendon or not is that, 
its minimal height has to be larger than three pixels and its 
width has to be larger than fifteen pixels. We then calculate 
the distance between the margins of each cluster as the length 
of major axis of a TCM. Moreover, the X-coordinate of 
center of the TCM can be obtained by the average position of 
the corresponding margins.  

In the second step of estimation, a similar counting process 
is performed, which is however along each horizontal line 
within four sub-regions of the ROI constrained by the TCMs’ 
left and right ends. Thus, we can yield four counting results, 
from each of which the length of minor axis and the 
Y-coordinate of center of a TCM can be calculated. At last, 
we observe that the tilt angles of all TCMs are similar to the 
pronation/supination angle of the hand. They are hence 
assigned with the included angle between the horizontal axis 
and the vector, defined by connecting the centers of the 
TCMs in the index and little fingers respectively. The ellipse 
estimation result is demonstrated in Fig. 1d, wherein the 
position and shape of each TCM are close to those of the 
corresponding flexor tendon. In the rest of the paper, the 
points of the i-th TCM and its enclosed pixels are denoted as 
Mk,i and Rk,i respectively, where k is the index of cross- 
sectional images along the distal-proximal direction. 

III. CONTOUR MODEL PROPAGATION 
In general, there are certain positional offsets and size 
changes of flexor tendons between two adjacent cross- 
sectional images. The above ellipse estimation approach 
unfortunately may yield incorrect results in other 
cross-sectional images because of interference from some 
irrelevant tissues nearby the tendons and with low intensity as 
well. We hence present a contour model propagation strategy 
with affine registration to compensate such a spatial 
difference. 
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(a) (b) 

Fig. 2. Contour model propagation; (a) before (b) after the affine registration. 
 
The propagation process begins with the most proximally 
cross-sectional image, is performed sequentially on each pair 
of adjacent cross-sectional images along the proximal-distal 
direction, and finally stops at the most distal image. 

The registration is performed for each TCM by solving an 
affine transformation Ti which minimizes the cost function 
Creg: 
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where Eintensity is the intensity energy representing the average 
intensity inside the registered tendon, and Econtrast is the 
contrast energy indicating the average intensity difference 
between inside and outside regions of the TCM. Ik-1 is the 
(k-1)-th cross-sectional MR image. mk,i is the number of 
Mk,i,and n(Mk,i(j)) represents the inward-pointing normal of 
the j-th point of the TCM. η is a weighting factor, and ri is the 
number of Rk,i.  

Fig. 2 shows the tendon contours before and after the affine 
registration. After the contour propagation step, each 
registered TCM is closer to its corresponding position in the 
distally adjacent image, as indicated by the arrows. In the 
implementation the value of η was assigned with 0.5, and (1) 
was minimized using the Powell’s multidimensional direction 
set method [8].  

IV. MODEL SHAPE REFINEMENT 
In addition, there are certain local shape deviations 

between the registered TCMs and the true tendon boundaries 
on each cross-sectional image. Therefore, we design an 
algorithm of snake deformation to refine the shape of each 
TCM. The snake is deformed via minimizing the following 
energy E: 

( )
,
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1
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k im
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where Eedge is the edge energy, Eregion is the region energy, and 
Eshape is the shape energy. α and β are weighting factors 
determining the trade-off between these energies.  

The edge energy, which is used to capture the true tendon 
boundary at the transition from dark to bright (i.e., from 
inside tendon region toward outside), is given as 

  
(a) (b) 

Fig. 3. Model shape refinement; (a) before (b) after the snake deformation. 
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Next, the region energy that maintains low intensity inside the 
deformable model is formulated as 

3

, ,
1

( ( ) ( ( ))region k k i k i
a

E I j a j
=

= +∑ M n M . (6) 

The shape energy which keeps the deformable model elliptic 
in shape as much as possible is designed as 
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where cj and cj+1 are (Mk,i(j-1)-Mk,i(j)) and (Mk,i(j+1)-Mk,i(j)), 
respectively. The two arccosine functions in (7) indicate the 
local shape curvature at the j-th point of deformable model 
and original reference model, respectively.  

In our implementation, (4) was minimized by iteratively 
adjusting the positions of points on the TCM to fit the true 
tendon boundary along the normal directions of contour 
points.  The values of α and β were set to 0.5 and 0.3, 
respectively. Fig. 3 shows the result of snake deformation. 
Compared to the tendon contours obtained by registration 
only, the refined TCMs better fit the true tendon boundaries 
as indicated by the arrows. After the TCMs on each image are 
refined, a stack of segmented cross-sectional images can be 
obtained as the final segmentation result of flexor tendons.  

V. EXPERIMENTAL RESULTS 
The following experiments for validating the accuracy of 

the proposed method contained visual evaluation and 
quantitative analysis. In the experiments, MRI examination 
for three healthy subjects was performed using the same 
1.5-T whole-body MR imaging system (Achieva; Philips 
Medical Systems, Best, the Netherlands). The obtained MR 
volumes with 16, 14, 13 cross-sections respectively were then 
included in the validation work. The same values of the 
system parameters including the weighting factors in (1) and 
(4) were utilized throughout the entire experiments. 

Fig. 4 shows the segmentation results of the flexor tendons, 
in which the segmented contours were superimposed onto the 
MR images. Overall, our proposed method achieved 
satisfactory tendon segmentations with good fit and realistic 
shape, even in the presence of fuzzy boundaries and 
irrelevant tissues with similar intensity to tendons’ (pointed 
by the solid and dashed arrows, respectively). 

In the quantitative analysis, the automatic results were 
compared to the manual results of an expert that serve as the 
ground truth. The comparison was based on two distance 
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measures which are mean error (ME) and root mean square 
error (RMSE), and a spatial overlap index called dice 
similarity coefficient (DSC) [7]: 
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where ad is the d-th contour point of the automatic result, and 
ge is the e-th contour point of the ground truth that is the 
closest to ad, and N is the number of contour points of the 
automatic result. A and G are the pixels of flexor tendons in 
the automatic result and the ground truth, respectively. 
Generally, small values of ME and RMSE, and a large value 
of DSC indicate that the automatic results are consistent with 
the ground truth.  
    Table I lists the evaluation result. For each subject, the 
average values of ME and RMSE of all the cross-sectional 
images were less than 0.5 millimeter (mm). Compared with 
the maximal diameter (about 8.5 mm) of the flexor tendons 
among the axially cross-sectional images, the segmentation 
errors in ME and RMSE were considered as quite small. 
Moreover, the average values of DSC were all larger than 0.8, 
which is a threshold for a good overlap between two 
segmented regions. Consequently, the accuracy of the 
proposed method can be confirmed in some sense. 

VI. CONCLUSION 
We have proposed a novel model-based segmentation 

method for the flexor tendons from the MR images of finger 
joints. A two-step ellipse estimation approach was first 
designed to automatically initialize a set of TCMs on the most 
proximal cross-sectional image. Then, we registered the 
TCMs to the remaining cross-sectional images via the 
contour model propagation strategy. Finally, prior shape 
knowledge of tendon structures that the tendons are nearly 
elliptic-shaped in axial-view images was incorporated into 
the snake algorithm for refining the shape of each TCM. 
Overall, our method utilized the structural constraint of the 
TCMs throughout the segmentation process, so reliable and 
accurate tendon segmentation can be achieved as 
demonstrated in the experimental results. In the future, the 
proposed method can be extended to segment the tendons of 
the whole hand for pulley-tendon system modeling. Also, this 
method can be used to measure geometric parameters of 
tendons (e.g., size) for evaluating the structural changes 
caused by trigger finger. 
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Fig. 4.  Segmentation results of flexor tendons. 

 
TABLE I. ACCURACY EVALUATION RESULT WITH ME, RMSE AND DSC IN 

(MEAN, STANDARD DEVIATION). 

Subject  Average ME 
(mm) 

Average RMSE 
(mm) 

Average DSC 
(%) 

1 (16) (0.28, 0.05) (0.43, 0.07) (87.20, 1.56) 
2 (14) (0.29, 0.07) (0.43, 0.11) (86.94, 2.59) 
3 (13) (0.23, 0.10) (0.35, 0.14) (90.18, 4.15) 
Average (0.27, 0.07) (0.40, 0.11) (88.11, 2.77) 
(.) represents the number of cross-sectional images. 
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