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Abstract— Navigation and way finding including obstacle
avoidance is difficult when visual perception is limited to low
resolution, such as is currently available on a bionic eye. Depth
visualisation may be a suitable alternative. Such an approach
can be evaluated using simulated phosphenes with a wearable
mobile virtual reality kit.

In this paper, we present two novel approaches: (i) an
implementation of depth visualisation; and, (ii) novel methods
for rapid rendering of simulated phosphenes with an empirical
comparison between them. Our new software-based method
for simulated phosphene rendering shows large speed improve-
ments, facilitating the display in real-time of a large number
of phosphenes with size and brightness dependent on pixel
intensity, and with customised output dynamic range.

Further, we describe the protocol, navigation environment
and system used for visual navigation experiments to evaluate
the use of depth on low resolution simulations of a bionic eye
perceptual experience. Results for these experiments show that
a depth-based representation is effective for navigation, and
shows significant advantages over intensity-based approaches
when overhanging obstacles are present. The results of the
experiments were reported in [1], [2].

I. INTRODUCTION
Low/impaired vision is common with prevalence rates

ranging from 2.7 to 5.8% [3], [4], [5]; it is projected that
in Australia these numbers will increase with the number of
people with vision loss aged 40 or over rising from 575,000
to almost 801,000 by 2020 [3]. In terms of the individual,
low vision is associated with impaired physical and social
functioning, and reduced quality of life; in particular, mobil-
ity is often impaired. Targeting mobility and its components
such as the ability to safely navigate through an environment,
is one aspect of visual functioning that may lend itself
to effective intervention strategies including vision-related
assistive devices and the retinal implant [6].

In normal human vision, depth cues come from many
sources including stereo disparity, optical flow, scene un-
derstanding and motion parallax. These cues have a role
in enabling visual navigation, and the direct availability
of depth cues may be important for low resolution visual
displays, such as used in a bionic eye. In this paper we
describe the implementation of depth visualisation in such
displays. We also describe the technical setup and protocol of
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mobility experiments comparing the efficacy of depth-based
visualisation versus intensity-based visualisation.

Simulated prosthetic vision (SPV) was used in these exper-
iments. A phosphene is the visual percept experienced by a
subject when one site of the visual pathway is under electrical
stimulation. Although phosphenes have been reported as pre-
senting a variety of shapes, they are commonly represented
as dot-like [7]. SPV is typically implemented as a collection
of (simulated) phosphenes [7], [8] arranged on a regular or
hexagonal grid. While SPV is an idealised representation of
the prosthetic experience, it is well suited as a first step to
evaluating the functionality of visual representations.

We trialled two visual representations: the first consisted
entirely of disparity information directly available across the
whole of the visual field, while the second was intensity-
based and depth poor. Resolution was low (35 × 30 visual
elements/phosphenes) so that there was little available in
terms of depth cues from motion parallax, shadowing, or
linear perspective.

Participants were blindfolded, and access to visual infor-
mation was via a head mounted display (HMD) connected
to head-mounted cameras. Disparity and intensity images
were captured directly from the cameras. In the disparity
image the pixel value is relative to the location mapped
by the pixel: the brighter the pixel, the closer the location.
Phosphenes were built as discrete Gaussian kernels using
impulse sampling at the phosphene location, without prior
filtering. Other common methods for rendering phosphenes
are to filter the image prior to sampling [8] or after [9], or
apply a mean or Gaussian filter over an area centered at the
phosphene location [7].

There have been many studies assessing SPV for nav-
igation. Some studies use static images [10] or simulate
phosphenised vision by covering the camera with a mask
[11]. A few studies implement close to real-time simulation
[12], [9]. For experiments using SPV in an interactive setting,
such as navigation trials, fast rendering of the simulated
phosphenes is critical. In this paper, we present a purely
software-based method for rendering phosphenes to support
a broad variety of possible scenarios, including from very
few up to tens of thousands of phosphenes in a single
image, a varying output dynamic range (possibly varying
across different phosphenes in a single image), and differ-
ent phosphene sizes. We compare our approach with two
Gaussian convolution-based approaches that use some fast
tricks in terms of implementation and a new method for Fast
Gaussian Approximation [13]. We show that a lookup table
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offers best (real-time) performance up to 5,000 phosphenes
over all output dynamic range values.

II. METHODS
A. The study

The study was a pilot to inform a larger forthcoming study;
it had a 2 × 2 repeated measures design. Specifically the
design reflects the two levels of depth perception (depth rich,
depth deprived) and two levels of navigation task difficulty
(with or without overhanging obstacles). Human ethics ap-
proval has been granted by the Human Research Ethics at
the Australian National University, Canberra, Australia.

B. Participants
Four participants (three females and one male), aged 21-

24, with objectively assessed (by testing visual acuity and
contrast sensitivity) normal or corrected-to-normal vision and
no mobility impairment were recruited.

C. The trial environment
The navigation trials took place in an indoor modular maze

comprising 3 × 6 cubicles of 1.5m × 1.5m. The cubicles’
partitions were made of cloth curtains that were moved
according to the trail course to be undertaken; fabric drops
were ‘sewn’ together using Velcro strips. For some traversals
overhanging obstacles were added; they were made of fabric.
The fabric drops were white, while the floor and the obstacles
were dark grey and black respectively, see Figure 1 (b). The
contrasted colour scheme provides well-suited conditions for
differentiating intensity-based information at low resolution
(see studies like [11] for example). We added textured lace to
walls and obstacles to enable computation of the depth-based
representation.

D. The physical visual system
A modified skate-board helmet was used to hold a stereo

camera rig (Point Gray Bumblebee) together with a HMD,
the eMagin Z800 3D Visor. The helmet shows great stability
during mobility trials. We made a blindfold out of fabric to
achieve effective blocking of any visual cues beside those
displayed by the HMD.

Visual processing was performed on a laptop mounted
on a converted baby carrier worn by the participant. The
laptop monitor was used by experimenters to monitor what
was effectively seen by the participant. Figure 1 shows the
resulting set up.

(a) (b)

Fig. 1. (a) the physical visual system and (b) navigating through the maze.

E. Outcome Measures
Outcome measures were aspects of human navigation and

included percentage of preferred walking speed (PWS), and
number of contacts with objects.

1) Percentage of preferred walking speed (PPWS): PPWS
is the ratio of mobility course speed to preferred walking
speed, expressed as a percentage [14]. The mobility course
speed is the speed at which participants navigate the trial
environment under experimental conditions; preferred walk-
ing speed is the speed at which participants navigate under
normal vision conditions (i.e., without vision processing).

2) Errors (contacts with walls and obstacles): Errors are
defined as contact with walls and obstacles. Each trial was
monitored by an experimenter who recorded the number of
collisions with walls and obstacles in the test environment.

F. Simulated phosphene rendering
Phosphene rendering was applied either to the intensity

image or to the depth image; the images had a resolution
of 320 × 240 pixels. Our simulated phosphene display
consisted of a 35 × 30 rectangular grid scaled to image size.
Each phosphene had a circular Gaussian profile whose center
value and standard deviation is modulated by brightness at
that point [15]. In addition, phosphenes sum their values
when they overlap. For the pilot study phosphene rendering
was performed at 8 bits which again is an idealised repre-
sentation. It is generally assumed that maximum neuronal
discrimination of electrical stimulation is closer to a 3 bit
rendering. Figure 2 shows the phosphenised rendering of the
intensity image (a) and the depth image (b).

(a) (b)

(c) (d)

Fig. 2. (a): the original image; (b) the depth image (here normalised for
easy viewing); (c) the phosphenised intensity image; (c) the phosphenised
depth image.

1) A real-time rendering method: In-place kernel method:
Let di and do be the input and output dynamic range
respectively. In our case di = 8. We sample the image at the
phosphene location (x, y), and using the intensity i at that
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location (without additional filtering), we create a discrete
Gaussian kernel G of size w × w centered at (x, y) with
standard deviation ([·] denotes the rounding function)

σ = Iγ , (1)

I =

[[
i× 2do − 1

2di − 1

]
× 255

2do − 1

]
, (2)

and w = b6σc. (3)

Here γ is the gamma control parameter. With b a brightness
parameter the final phosphene value at (x, y) is set to

p[i, x, y] =
255

Ic
b eσ

(
I

255

)γ
G[x, y]. (4)

where Ic is a normalising constant. This ensures that both the
size and the brightness of the phosphene are dependent on i.
The setting of the standard deviation σ to Iγ has been chosen
as it gives good empirical results in modulating phosphene
size with intensity.

Constructing a lookup table of p[i] matrices for all possible
values of i ensures fast computation: the final phosphene
image is obtained by simply summing up the p[i, x, y]
matrices for all phosphene locations (x, y). Note that our
in-place kernel method allows for each phosphene p being
rendered according to individualised parameters γp and bp.
With careful construction of the lookup table with respect to
the γp and bp parameters it is possible to minimise the size
of the table and thus the amount of overhead.

2) A convolution approach: We compared our approach
with the traditional convolution approach whereby the whole
image is convolved with a Gaussian. First we create 2do

blank images In, n = 1, . . . , 2do , of same size as the original
image I.

We sample I at the phosphene location (x, y) (again,
without additional filtering), giving an intensity i. For n
such that i ∈ [(n − 1)2di−do , n2di−do − 1] the value at
(x, y) in image In is set to 1

Ic
b eσ

(
I

255

)γ
where I , γ,

b, Ic, and σ = Iγ are as defined above. Each of the In
images is then convolved with a Gaussian with standard
variation σ. Adding the In images and mapping the pixel
values into the [0 . . . 255] range gives the final phosphene
image. Bar the normalisation inherent in the convolution of
the In images, the final phosphene image is equivalent to
the one obtained by the in-place kernel method. We opted
for a layered approach in order to render phosphenes with a
size varying with intensity.

We implemented the convolution of each image In (i)
using the highly optimized openCV cvSmooth function
with a Gaussian filter (implemented using FFT), and (ii)
using a fast Gaussian approximation based on an averaging
filter as described in [13].

3) Fast Gaussian approximation: Fast Gaussian approx-
imation is implemented as a sequence of averaging filters
using integral images. One averaging filter of width w has
standard deviation of

√
w2−1
12 ; n averagings with the same

filter will have a standard deviation of
√

nw2−n
12 . Then the

ideal width wi of the averaging filter approximating a Gaus-
sian filter of standard deviation σ will be wi =

√
12σ2

n + 1.
We require that wi be an odd integer; the solution is to find
the two odd integers wl and wu = wl+2 with wl <= wi and
wu >= wi together with the integer m so that m averagings
with a filter of width wl followed by n−m averagings with
a filter of width wu approximates the original Gaussian filter
of standard deviation σ. For n = 5, the accuracy of the
achieved standard deviation is ± 0.1673 [13].

III. RESULTS
Since the Fast Gaussian approximation is a sequence of

averaging filters it will be constant in the size of the window
or phosphene size w, itself dependent on γ, see (3) and
(1). This is opposed to the openCV Gaussian cvSmooth
function, which is exponential in γ, that is w; in-place kernel
also depends exponentially on γ. Both convolution methods
are constant in the number of phosphenes, while in-place
kernel is linear. Finally the two convolution approaches are
exponential in the number of layers, that is in the dynamic
range value, while in-place kernel is constant.

To compare the three methods we proceed as follows: for
a given resolution of 320×240 pixels and for a given number
of phosphenes n, we compute a maximum phosphene size
w = 3d where d is the inter-phosphene distance in pixels
when n phosphenes are uniformly placed in a grid on the
whole image. A value of w larger than 3d would not be
realistic as rendered phosphenes would entirely overlap their
closest neighbours. In other words w is a function of n (and
of the image resolution). For given n and w dependent on n
and a dynamic range of 3 bits, we time the three methods;
Figure 3 shows the results.

In-place kernel outperforms the convolutions methods for
n up to 5,000. In Figure 3 we note that the openCV Gaussian
method outperforms the Fast Gaussian approximation for
values of n larger than 200: this is easily explained by
the fact that w gets smaller as n increases. Fast Gaussian
approximation has real-time performance for any number
of phosphenes; openCV Gaussian achieves real-time perfor-
mance for n > 50 (Figure 3(b)).

(a) (b)

Fig. 3. Comparing in-place kernel with the two convolution methods,
openCV Gaussian cvSmooth and Fast Gaussian approximation for varying
number of phosphenes, a maximum phosphene size dependent on the
number of phosphenes, and an output dynamic range of 3bits (see text).

For larger dynamic ranges we compare the performances
of the three methods for n = 1000 and n = 100; as before
the phosphene size w is a function of n. Figure 4 shows the
results: in-place kernel outperforms the convolution methods,
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and is real-time and nearly constant for all dynamic ranges.
Again compare Figure 4(a) and Figure 4(b) for the differing
performance of Fast Gaussian approximation and openCV
Gaussian with respect to phosphene size.

(a) (b)

Fig. 4. Comparing in-place kernel with the two convolution methods,
openCV Gaussian cvSmooth and Fast Gaussian approximation for varying
output dynamic range, for n = 100 (a), and n = 100 (b).

We conclude that for simulations typical of low vision
conditions (e.g. less than 5,000 phosphenes) in-place kernel
outperforms the convolution methods over a variety of dy-
namic range values while uniquely providing the possibility
for individual phosphene parameterisation. This option is not
available in the openCV Gaussian method which could be
considered when the number of phosphenes is larger than
5,000 and the output dynamic range is 3, a value closer
to the actual behaviour of discriminative electrical neuronal
stimulation. Note also that in-place kernel is real-time for a
large number of phosphenes (up to 30,000) over the whole
dynamic range.

As Fast Gaussian approximation is constant in phosphene
size it could be considered if larger image resolution were
necessary; the other methods would do poorly as they are
exponential in w – large Gaussians are computationally
expensive.

Real-time phosphene rendering enabled us to successfully
run human mobility pilot trials under low vision conditions.
Depth and intensity images, both obtained from the Point
Gray Bumblebee camera, were phosphenised. Participants
completed various navigation tasks under a randomly allo-
cated visual representation (either depth or intensity).

Depth- and intensity-based representations were effective,
facilitating visually guided navigation (PPWS was larger than
50% in all cases –with and without obstacles, n = 54, p <
0.05) [1]. When no obstacles were present, intensity facili-
tated significantly faster navigation than depth (p < 0.001).
However, when overhanging obstacles were present, PPWS
was significantly reduced for intensity (p = 0.03)); this was
not the case for the depth-based representation. However
the difference between the difference of PPWS for depth
and the difference of PPWS for intensity was significant
(p = 0.01). Therefore a depth-based representation shows
significant advantage when overhanging obstacles are present
in the navigation environment [2].

IV. CONCLUSION AND FUTURE WORK
In this paper we have described the technical imple-

mentation and protocol for experiments in human mobility
under low vision conditions. We have also introduced and

described a software-based real-time phosphene rendering
method suitable for a large number number of arbitrarily
placed phosphenes, and an arbitrary dynamic range. As a
next step, we plan to investigate visual representations where
rendering is customised for each phosphene, thus fusing
image processing and rendering.
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