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Abstract— An extended registration model is presented to
register medical image triples acquired for brain dopamine
receptor scintigraphies. The model operates with rigid and non-
linear transformations in parallel, where all transformation
parameters are optimized by one optimization method. The
concept of the transformation-sampling-similarity measurement
minimizes the memory usage of a real implementation. A
partial-fine sampling method is proposed to decrease the pro-
cessing time of the registration. Real medical data was collected
to compare our method with well-known prior ones. The first
tests show that the model outperforms the classic registration
methods in both speed and accuracy.

I. INTRODUCTION

Brain dopamine receptor scintigraphies are common pro-

cedures in the daily routine of nuclear medicine [1], [3],

[4], [5]. These methods provide information about receptor

densities to differentiate Parkinson’s disease from Parkin-

son’s syndromes [3], [7] as well as Alzheimer’s disease

form Lewy-body dementia [2], [4], [5], [6]. The scintigra-

phies are generally performed by a Datscan (or FP-CIT)

SPECT (Single Photon Emission Computed Tomography)

and an IBZM SPECT acquisition representing pre-synaptic

and post-synaptic events respectively [8]. The comparison

of these image pairs provides metabolic information to

differentiate the above diseases. Since the spatial resolu-

tion of SPECT is generally poor and does not provide

morphological information, an additional MRI (Magnetic

Resonance Imaging) brain acquisition is also essential for

perfect localization [9], [10]. The SPECTs and the MRI

are never performed at the same due to the lack of human

SPECT-MRI hybrid cameras. Based on the above reasons

registration is an essential step to fuse these image triples.

Brain itself is a rigid organ, hence SPECT images can

be superimposed with a rigid transformation, although MRI

scans may produce non-linear distortions [11]. Prior methods

have shown that an extended registration of more than two

images is a logical way to minimize the global misalignment

of the images [12], [13], [14]. Nevertheless these methods

have not taken into account that the nature of the misalign-

ment may be different of all involved images. Furthermore
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the increasing number of images requires more sophisticated

speed optimization methods during the registration.

We had two goals with current research: to design a fully

flexible extended registration framework which minimizes a

similarity function accepting rigid and non-linear transfor-

mation parameters in parallel and to apply it to the above

real clinical data. The model was designed to operate with

one optimization method to achieve a global optima among

the images. Additionally a partial fine sampling method (PF)

was introduced to decrease processing speed. The model

performed the transformation, the sampling and the similarity

measurement on an “atomic” level, hence no hard copy of

the input images was necessary. This way it needed minimal

memory.

II. MATERIALS AND METHODS

A. Patient images

18 anonymized and reconstructed DICOM (Digital Imag-

ing and Communication in Medicine) brain MRI, IBZM

SPECT and Datscan SPECT image triples were collected

about patients examined by dopamine receptor scintigraphy.

The average voxel resolution of the SPECT images was

uniformly 4mm in axial, sagittal and coronal direction. The

axial matrix size was 128x128 pixels. The MRI images had

1.0x1.0x3.0 mm voxel resolution with 512x512 axial matrix

size.

B. Methods

1) Registration model: Let us denote the set of images

I = {I0, . . . , In−1|n ≥ 2} where I0 is the reference of

the registration, and all other images are floating ones. Let

T = {T1, . . . , Tn−1} denote a transformation set, where Ti

holds the corresponding transformation for Ii image. By the

perspective of the current model the type of transformation

is negligible.

Let bb : (Ii, Ti) → (R3, R3) bounding box function

determine the minimal (start) and maximal (end) spatial

coordinate of an Ii image by applying a Ti transformation

as (start, end) = bb(Ii, Ti). In case of the reference image

T0 is considered to be an identical transformation.

Assuming that Ii ∈ I is a 3D image, x ∈ R
3 global

coordinate provides a gray value g ∈ R from image Ii

by considering the given Ti transformation and the actual

bounding box values as defined by ( 1).

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 8025

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



g =

{

Ii(Ti(x)) if bb(Ii, Ti).start < x < bb(Ii, Ti).end

min(Ii) otherwise
(1)

The chosen interpolation method applied at the sampling

step is not taken into account by current model.

The model is able to execute registrations after each other

with different sampling parameters, where every registration

execution applies several iterations to optimize all unknown

Ti ∈ T transformations. Let us denote RE = {re1, . . . , rek}
iteration set which contains the maximum number of itera-

tions for each rei ∈ RE registration execution.

The sampling of the images during the transformation

search is performed over parallel planes in axial, sagittal and

coronal direction. To characterize the distance of the planes

a PD =
{

pd
1
, . . . , pdk

}

set is defined where (pdi ∈ R
3

>0
)

represents the plain distances in the ith registration execution

in axial, sagittal and coronal directions. Furthermore PS =
{ps

1
, . . . , psk} set is defined where (psi ∈ R

3

>0
) represents

the sampling density on the planes in the ith registration

execution.

Let us define a wfl = rs(I, T, x) resampling space func-

tion where I is the image set, T is an actual transformation

set and x ∈ R
3 is a global coordinate. The result wfl ∈ R

n−1

is a vector where w
fl
i ∈ wfl|wfl

i = Ii (Ti(x)) represents

the sampled value from Ii floating image at Ti(x) and

1 ≤ i ≤ n − 1. Note that the reference values never change

during one registration execution since the reference image

does not have a corresponding T0 transformation (or it is

considered to be identical). This way the sampling of I0 is

simply performed by wref = I0(x).
To cache the spatial coordinates that need to be trans-

formed for sampling, let us define a SCT sampling coordi-

nate set based on ( 2)

∀x| sc(psi, pdi, bb(I, T ), x) = true : SCT ∪ x (2)

where psi ∈ PS and pdi ∈ PD. Assuming that psi =
(s1, s2, s3), pdi = (d1, d2, d3), x = (x, y, z) and

{

a
b

}

0
≡

(a mod b = 0), the definition of sc is given by ( 3).

sc ((sx, sy, sz), (dx, dy, dz), bb(I, T ), (x, y, z)) =
(({

x
d1

}

0

∧
{

y

d2

}

0

∧
{

z
s3

}

0

)

∨
({

x
d1

}

0

∧
{

y
s2

}

0

∧
{

z
d3

}

0

)

∨
({

x
s1

}

0

∧
{

y

d2

}

0

∧
{

z
d3

}

0

))

∧
(

bb(I, T ).start < (x, y, z) < bb(I, T ).end
)

(3)

Based on SCT the values of I0 (x) can be pre-cached in

all rei ∈ RE registration step as defined by ( 4).

∀wref = I0(x)|x ∈ SCT : SV ref ∪ (wref , x) (4)

This way SV ref holds all sampled wref values and their

corresponding x coordinates in a pair. The final v vector

TABLE II

PARAMETERS OF THE REGISTRATION FRAMEWORK TO REGISTER THE

MRI AND IBZM SPECT TO THE DATSCAN SPECT

i rei pdi (mm) psi (mm) Type of T1 Type of T2

1 200 (64,64,64) (32,32,32) rigid rigid

2 200 (32,32,32) (8,8,8) rigid rigid

3 500 (16,16,16) (4,4,4) nonlinear rigid

Current settings assume that the reference image was the
Datscan SPECT, furthermore T1 and T2 were the transforma-
tions for the MRI and the IBZM SPECT respectively.

holding both reference and floating sampled values can be

stored in SV sampled value set as defined by ( 5).

∀x ∈ SCT : SV ∪ v = (wref , wfl)|

(wref , x) ∈ SV ref , wfl = rs(I, T, x) (5)

Let us denote an sm : R
n → R similarity measurement

function which measures the similarity value δ ∈ R based

on all sampled v ∈ SV by δ = sm(SV ). Note that the

way of transformation, sampling and similarity measurement

does not require the transformed hard copy of the original

images, furthermore the reference values are cached in all

registration execution step. Let om refer to an optimization

method which can get a δ similarity value and return with a

new T transformation set. Over the iterations om minimizes

the δ similarity value which is associated with the optimal

T transformation.

Based on the above definitions the algorithm of the regis-

tration framework is defined as Tab. I.

2) Medical Application: The above model was the base

of current triple registration where sm was an extended

normalized mutual information [14] defined as ( 6), and om

was the Downhill-Simplex method [15].

−
H(I0) + H(I1) + H(I2)

H(I0, I1, I2)
(6)

where H(Ii) (0 ≤ i ≤ 2) was the Shannon entropy [16]

of image Ii as defined by ( 7) and H(I0, I1, I2) was the joint

Shannon entropy of images I0, I1 and I2 as defined by ( 8).

H(Ii) = −
∑

a∈Ii

p(a) log p(a) (7)

where p(a) is the probability of a value occurrence in

image Ii.

H(I0, I1, I2) = −
∑

a∈I0

∑

b∈I1

∑

c∈I2

p(a, b, c) log p(a, b, c) (8)

where p(a, b, c) is the probability of the mutual a, b, c

value occurrence in images I0, I1 and I2 respectively.

For settings of RE,PD,PS and the type of Ti ∈ T see

Tab. II.

The I0, I1, I2 ∈ I images were considered as the Datscan

SPECT, MRI and the IBZM SPECT Respectively. Overall,
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TABLE I

MAIN STEPS OF THE EXTENDED REGISTRATION FRAMEWORK

1 I := {I0, . . . , In−1} Declare I image set

2 T := {T1, . . . , Tn−1} |Ti = id Declare T as the set of identical transformations

3 RE := {re1, . . . , rek} Declare the registration execution set

4 PD :=
{

pd1, . . . , pdk

}

Declare the plain distances set

5 PS := {ps1, . . . , psk} Declare the plain sampling set

6 ∀1 ≤ i ≤ k : Go through registration executions

7 SCT := ⊘ Initialize the sampling coordinate set

8 ∀x| sc(psi, pdi, bb(I, T ), x) = true : SCT ∪ x Calculate the actual sampling coordinates and collect them into SCT set

9 SV ref := ⊘ Initialize the cached reference value-coordinate pair set.

10 ∀wref = I0(x)|x ∈ SCT : SV ref ∪ (wref , x) Collect the pair of the sampled reference wref value and its x coordinate

11 ∀1 ≤ j ≤ rei : Go through optimization iterations

12 SV := ⊘ Initialize the sampled values set

13 ∀x ∈ SCT : Go through the x sample coordinates

14 wfl := rs(I, T, x) Calculate the actual wfl value vector which holds the values of the floating images

15 v := (wref , wfl)|(wref , x) ∈ SV ref Append the pre-calculated wref and the corresponding wfl values to v

16 SV ∪ v Collect v into SV

17 δ := sm(SV ) Calculate the similarity value based on actual SV

18 T := om(δ) Generate a new T by om optimization method based on δ similarity value

3 registration executions were performed. The first two

executions optimized T1, and T2 by rigid transformations,

hence om had to minimize 12 parameters (6-6 parameters

for shifting and rotation for both floating images). The last

execution optimized a nonlinear b-spline transformation [12]

for I1 and a rigid one for I2. The control points of the non-

linear transformation were the intersections of pd1 planes

(see Tab. II).

C. Validation

In order to compare our method to prior proposed ones, the

registration of the image triples was performed by two classic

dual NMI based non-linear and rigid registrations between

I0 − I1 and I0 − I2 pairs respectively. In these cases the

values of rei were the same as shown in Tab. II. To compare

our partial fine strategy to classic ones, the two dual NMI

registrations took samples regularly based on the values of

psi. Since the misalignments of the medical image triples

were unknown, the validation of our method in these cases

was performed by visual inspection.

Due to the above limitations an automated validation was

performed as well based on simulated data. Two artificial

SPECT images were created from all real MRI images. The

resolution of the artificial SPECT images was decreased to

the level of the original SPECT ones and the voxel values

were smoothed by direct neighbor values. A known rigid and

non-linear transformation was applied to the artificial IBZM

SPECT, and the MRI respectively.

To compare our partial-fine sampling strategy to regular

ones, our method was also applied with pdi = psi settings

in both real and simulated cases.

The mean and standard deviation of the rigid and non-

linear parameter differences were calculated for all three

methods.

TABLE III

TRANSFORMATION PARAMETER ERRORS ON REAL IMAGES

T1 non-linear error T2 rigid error

Our method 2.3512± 0.8543 0.9324 ± 1.1349

Our method (PF) 2.5627± 1.5291 1.1853 ± 1.3581

dual NMI 3.8396± 2.3466 1.9767 ± 1.9248

Cells represent µ ± σ values in mm.

TABLE IV

TRANSFORMATION PARAMETER ERRORS ON SIMULATED IMAGES

T1 non-linear error T2 rigid error

Our method 2.1158± 0.9576 0.6314 ± 0.8198

Our method (PF) 2.2013± 1.2745 0.8701 ± 0.9543

dual NMI 2.4396± 1.2243 0.9677 ± 0.9732

Cells represent µ ± σ values in mm.

III. RESULTS

Based on Tab. III and Tab. IV, our method outperformed

the dual NMI registration with both regular and partial

fine sampling strategies. Our PF strategy was slightly less

accurate than our regular one, although the latter one needed

much more computation. The average time of our method

was 25sec applying PF strategy and 134sec applying regular

sampling. The sum of the registration time of the two dual

registrations was 112sec.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a registration framework which is able

handle different transformations for different floating images.

This way the global optima can be achieved by one extended

registration. Although our method outperformed the classic
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Fig. 1. A real medical IBZM SPECT-Datscan SPECT-MRI example representing the initial stage (top) and the result provided by our framework applying
the PF sampling strategy (bottom).

registration with both regular and PF sampling strategies, it

also had an increased computational complexity. Considering

that our PF sampling strategy did not decrease the accuracy

of the registration significantly, but significantly decreased

the processing speed, it is advised to be involved in future

extended registration techniques.

B. Future Works

Current framework will be tested on images acquired

about neuro-endocrine tumors to support decision making in

the therapy [17]. Our framework will be further developed

to operate with image groups where one group can be

superimposed by one transformation. This situation appears

when follow-up multi-modal studies are acquired by a hybrid

camera. This way much more images could be involved into

the framework without increasing the number of unknown

transformations.
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