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Abstract—An approximate model for the effect of respiration 
is that the cross section of the thoracic area under interrogation 
experience time-varying magnification and displacement along 
two perpendicular axes – we propose to model this motion as  
parametric affine motion. A theoretical framework for 
determination of parameters of affine motion modeling the 
global respiratory motion based on the sinogram data in the 
projection domain is described. It is assumed that the spatial 
image considered is a density image where conservation of mass 
holds.  

I. INTRODUCTION 
Respiratory motion results in various artifacts such as 

blurring and streaking in tomographic images. Tomographic 
projection data (sinogram data) encode not only the patient 
anatomy information, but also intra-scanning motion 
information [1]. The respiratory motion is modeled as time-
varying scaling along the ݔ and ݕ direction. A simplified 
cross section of a patient lying supine in a CT scanner is 
shown in figure 1, where the patient's back is resting on the 
scan table at ሺݔ . We assume that respiration causes a 
time-varying magnification, denoted ݉  and ݉ , about the 

 and ݕ axes, respectively [2], expressible as an affine 
motion [3]. 
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A fundamental problem in both image sequence 
processing and computer vision is estimation of the image 
motion in a temporal sequence of frames; a great deal of 
effort has been devoted to this problem in the past [3-7]. 
Time-varying image sequences are typically modeled as a 
space-time evolving function ݂ሺ  where ݔ and ݕ 
represent the spatial coordinates in the image plane and ݐ is 
the time variable. Written with respect to a reference frame 
chosen at time ݐ ൌ , we then have the model 

ሻ (1) 

where ݒ  and ݒ  denote the components of the 
velocity (motion) vector field ݒ and where it is assumed that 
higher order components of the motion field such as 
acceleration and jerk are identical to zero. In this paper, we 
are concerned with estimating the class of vector fields ݒ 
parameterizable by an affine model. Therefore, the vector 
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fields of interest are characterized by 
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where 
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ܯ ൌ ቂܽ   ܾ
ܿ   ݀ቃ

ቃ,   (3) 

is a constant vector representing global translational 
motion, and 

,   (4) 

captures dynamics of body motions as manifested in the 
image plane. 

While there are many methods for estimating affine vector 
fields, we base our analysis on the image projections which 
provide an effective and efficient way of describing image 
contents and estimate particular kinds of motion. For 
instance, the problem of 2D translational motion estimation 
can be reduced to two 1D translational motion estimation by 
using projections. This reduction may bring both algorithmic 
and computational simplifications. However, this requires 
the availability of a proper mapping model which describes 
how to map a problem into a number of simple problems. 

The aim of this paper is to exploit the gradient-based 
methods in the projection domain via Radon transform to 
yield fast, and accurate estimation of the motion parameters. 
The Radon Transform of an image is defined as line 
integrals across the image[8]. The shift property of the 
Radon transform states that pure translational motion in an 
image results in translation of the projections along the 
direction of projection [8, 9]. In particular, it can be shown 
that affine motion in the image leads to affine motion in the 
projections as well [9-11]. These properties were modeled as 
a motion mapping model in [10] and has been used in the 

Figure 1: Outline of cross section of chest during respiration. Solid 
and dash lines represent different samples in the respiratory cycle [2].
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past to estimate motion from projections [1, 10-12]. 
However, the proposed model in [10] is based on differential 
gradient-based models and as will be shown though effective 
for simple forms of affine motion, can result in large errors 
when the motion is non-rigid and includes shearing or linear 
divergence. 

The proposed algorithm in this paper is able to cope with 
the aforementioned difficulty in estimating affine motion. 
Nonetheless, as a limitation of all affine motion estimation 
techniques including the one presented here (the so-called 
motion mapping models), only 5 of the 6 affine parameters 
can be estimated. Therefore, the work presented here is an 
important step forward in estimating parametric affine 
motion from image projections. In particular, this model is 
valid and more accurate than previously proposed techniques 
when dealing with density images where the physical 
principle of mass conservation holds. A good example of 
this scenario holds in CT images of lung as modeled in 
figure 1. 

The paper is organized as follows. First, a brief overview 
of the motion in the projection domain is given. 
Subsequently, the affine motion estimation algorithm based 
on projections as well as our proposed algorithm in 
estimation of the projected and affine motion parameters is 
introduced and derived. Next, experimental results and 
comparison with previous methods are presented. Finally, 
the main conclusions and some ideas for further work are 
presented. 

II. METHOD 
In the proposed algorithm in this paper (figure 2), a set of 

projection signals of two consecutive images (block a) is 
estimated via the normalized Radon transform (block b), 
Subsequently, 1D affine motion between each pair of 
corresponding projection signals is estimated (block c). 
Please see section A for details of these steps. Finally, 2D 
image affine motion is derived from the set of estimated 1D 
motion parameters, using a motion mapping model (block 
d). Please see section B for a description of this part. 

A. Motion in the Projection Domain 

The Radon transform of an image ݂ሺ  is defined as [8] ݔ, ሻݕ

݃ሺ, ߠ ൌ ࣬ఏሾ݂ሺݔ,  ሻሿݕ
ൌ  ݂ሺݔ, ሺߜሻݕ െ ݔ cos ߠ െ ݕ sin ݕ݀ݔሻ݀ߠ

݃ሺ, ߠ ൌ ෨࣬ఏሾ݂ሺݔ,  ሻሿݕ

ൌ  ሺ௫,௬ሻఋሺି௫ ୡ୭ୱ ఏି௬ ୱ୧୬ ఏሻௗ௫ௗ௬
 ఋሺି௫ ୡ୭ୱ ఏି௬ ୱ୧୬ ఏሻௗ௫ௗ௬

ሻ
 (5) 

The normalized Radon transform defined in [11] is 

ሻ

  (6) 

This definition normalizes the radon transform with 
respect to ray length and in projection domain produces a 1D 
constant projection of a constant image irrespective of size. 
Technically speaking, this definition gives more accurate 
results when computing derivatives from projection data, 
however; in theory, derivations are identical with both 
approaches. 

One of the most fundamental and useful properties of the 
Radon transform is that shifting of the image results in a 
shifted projection [8, 10]. This relates translational motion in 
the image domain to simple displacement in the projection 
domain.  

࣬ఏൣ݂൫ݔ െ ,௫ݒ ݕ െ ௬൯൧ݒ ൌ ݃ሺ െ ሬሬሬሬԦ்߱,ሬሬሬԦݒ ߠ 
ൌ ݃ሺ െ ,ሻߠሺݑ ሻߠ

ሬ߱

) 
  (7) 

where ሬԦ ൌ ሾcos ߠ   sin ሿߠ

 
i e function ݑሺ,  ሻߠ

such that 

ሾ݂ሺݔ െ ,ݐ∆ଵݒ ݕ െ ሻሿݐ∆ଶݒ ൌ ݃ሺ െ ,ሺݑ ,ݐ∆ሻߠ  ሻ  (8)ߠ

where 

,ሺݑ ሻߠ డሺ,ఏሻ

் is a unit directional vector. 
The question of how general motion in image sequences 
behave under tomographic projection was addressed in [10] 
where it was shown that under certain smoothness 
conditions on the image and the vector field  Ԧ, forݒ
sufficiently small ∆ݐ, there ex sts a uniqu

࣬ఏ

డ
ൌ ࣬ ሾݒԦ்݂ሿ  (9) 

al im

n or w rping of the domain coordinates  by 
th

ove result is that 

ఏ

As in [9, 10], we refer to equation (9) as the Projected 
Motion Identity (PMI). This relationship states that the 
projection of a dynamic image sequence evolves in a 
qualitatively similar fashion as the origin age sequence. 
That is, the projection function ݃ሺ,  ሻ evolves aߠ
transformatio a

e function ݑሺ,  .ሻߠ
A straightforward corollary of the ab

Figure 2: Image motion estimation in the Radon transform domain.
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under the same assumptions, we have 
ௗ
ௗ௧

ൌ ࣬ఏ ቂௗ
ௗ௧

ቃ   (10) 

That is, locally, the projection of the total derivative of ݂ 
is the total derivative of the projection of ݂.An immediate 
consequence shown in ence [8] is that if the optical flow 
brightness constraint ௗ

ௗ௧

 refer
ൌ 0 is assumed to hold in the image 

domain, then equation (10) impli t this constraint also 
holds in the projection 

es tha
domain: ௗ

ௗ௧
ൌ 0, with motion in this 

erivative property1 [8, 10], 
we can express PMI as follows: 

esent the density of some 
conserved quantity. In that case, 

ௗ

domain given by (9). 
By invoking the directional d

,ሺݑ ,ߠ ሿ݂ሻ࣬ఏሾ்߱ݐ ൌ ࣬ఏሾݒԦ்݂ሿ (11) 

However, other forms of the PMI are also possible. 
Namely, Fitzpatrick [13] considered ݂ and ݒ to both be ܥଵ 
continuous, where, ݂ is to repr

ௗ௧
 ሻݒሺ݂ݒ݅݀ ൌ 0  (12) 

Taking the Radon transform of both sides of (12), and 
applying the directional derivative property we have 

߲݃
ݐ߲  ࣬ఏ ቈ

߲ሺ݂ݒଵሻ
ݔ߲   ࣬ఏ ቈ

߲ሺ݂ݒଶሻ
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ൌ
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ݐ߲  ߱ଵ

߲
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߲
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డ௧
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 డ
డ

࣬ఏሾ்݂߱ݒሿ ൌ 0 (13) 

Now if we define 
்߱ሿ (14) 

We obtain the continuity equation fo
డ

,ሺݑ ,ߠ ,ሻ݃ሺݐ ,ߠ ሻݐ ൌ ࣬ఏሾ݂ݒ

r ݃: 

డ௧


డ
డሺ௨ሻ ൌ 0  (15) 

The identity (14) is the PMI implied by the mass 
conservation principle which can be referred to as the 
Integral PMI (IPMI) , while referring to (9) as the 
differential PMI (DPMI). Similar to the DPMI, the IPMI 
also implies a description of ݑ as the ratio of oject

(

n of ߱, to the projection of ݂ itself in the same 
di

r and applying the 
directional derivative property we obtain 

                                                          

two pr ion: 

,ሺݑ ,ߠ ሻ࣬ఏሾ݂ሿݐ ൌ ࣬ఏሾ்݂߱ݒሿ  16) 

That is, ݑ is the ratio of the projection of the flux ሺ݂ݒሻ in 
the directio

rection. 
We now present a method for estimating the projected 

motion parameters from projections at a fixed angle ߠ over 
time based on the optical flow method. By expanding (12) in 
a Taylor series truncated to the first orde
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ݑ
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ାௗ
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  (17) 

Where ݃ and ݑ denotes the partial derivatives of ݃ and 
 with respect to the location variable , respectively, and 

. 

B. Effect of the 2D Affine Motion in the Projection 
Domain 

Any motion field can be locally approximated (to first 
order) by affine motion as considered in equation (2) [3, 10]. 
Affine motion can be decomposed into rotational, divergent, 
and shearing components. That is, the matrix ܯ can be 
written as follows: 

ܯ ൌ ቂ1   0
0   1ቃ  ି

ଶ
ቂ0 െ 1

1   0 ቃ  ିௗ
ଶ

ቂ 1   0
0 െ 1ቃ  ା

ଶ
ቂ0   1
1   0

ݔ
ቃݕ

ݕ

ݔ ݕ

߲
߲

ቃ    (18) 

where the first term of the above sum corresponds to 

linear divergent motion represented by ቂ ; the second term 

corresponds to rotational motion represented by ቂെݔቃ; and 
the final two terms correspond to shearing motions 

represented by ቂ ቃ and ቂ ቃ, respectively [9]. െݕ ݔ
To see how affine transformation behaves in the 

projection domain, let us consider warping an image by such 
a transformation. By computing the derivative of both sides 
of the IPMI with respect to  

ሺݑ݃ሻ ൌ
߲

߲
ሺ࣬ఏሾ݂ݓ்ݒሿሻ 
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Therefore, 
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డ

డఠభ
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ሺݑ െ ݒ
்߱ሻ డ
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 (19) 

 ሻ||௪|ୀଵ்߱ܯሺ݃ݒ݅݀ ൌ 0            (20) 

By using some properties of the Radon transform, as well 
as some approximations, the projection motion model in (20) 
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,ሺݑ ሻߠ ൎ ݒ
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,ݔሺݒ ሻݕ ൌ ሾݔ, ሿ்ݕ

݂ ൌ െ2ሺ1 െ ሻଶexp ሺെሺ1ݐ െ ଶݔሻଶሺݐ  ଶሻሻݕ ቂ
ݔ
ቃݕ

࣬ఏሾݒԦ்݂ሿ ൌ ࣬ఏൣെ2ሺݔଶ  ଶሻሺ1ݕ െ ሻଶݐ exp൫െሺ1 െ ଶݔሻଶሺݐ  ଶሻݕ

ൌ ି√గ

can be written as [10] 

 (21) 

This states that the projected motion ݑ  is also an 
affine function of the radial parameter , and is 
parameterized by ݑ  and ߙ . 

III. RESULTS 
In this part we explicitly work out analytical expressions 

for ݑሺ  for two different image sequences and vector 
fields. These examples are exactly those which were 
presented in [9] yielding an image to compare the 
performance of the approach in [9-11] which was based on 
DPMI with our proposed method which is based on IPMI. 

Figure 3: The color coded image in Example 1 
and its motion field. 

A. Linear Divergence in a Symmetric Magnification 

Let , and 
, as shown in figure 2. Computing the 

gradient of ݂: 

 (22) 

൯൧ 
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|ଵି௧|
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 (23) 
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0 1ቁ

ݑ ൌ   ଵ
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     (26) 

By comparing with (21) 

   (27) 

While the computed projected motion with the proposed 
algorithm in [9-11] get  

  (28) 

Clearly, the proposed algorithm gives more exact  answer. 

B. Rotational Motion 

Let 

simplifies to the previous  method in [9-11]; 

,ሺݑ ,ߠ ሻݐ ൌ ሾሺ௧ାଵሻ ୡ୭ୱ ఏାሺ௧ିଵሻ ୱ୧୬ ఏሿ
൫ଵିଶమሺଵା௧మሻ൯ሾሺ௧ାଵሻ ୱ୧୬ ఏିሺ௧ିଵ

݂ሺݔ, ,ݕ ሻݐ ൌ ሾሺݔ െ ሻݐଵݒ  ሺݕ െ ݔሺെሺݔሻሿ݁ݐଶݒ െ
 2ሻ which is not rotationally symmetric, andݐ2ݒെݕ2െݐ1ݒ
,ݔሺݒ ሻݕ ൌ ሾെݕ, .݂ ሿ். Sinceݔ Ԧݒ ൌ 0, the proposed method 

ሻ ୡ୭ୱ ఏሿ
 (29) 

IV. CONCLUSIONS 
Gi linearity property 

impli on of any affine 
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