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Abstract— In Magnetic Resonance Imaging (MRI), intensity
inhomogeneity has been an issue affecting the quality of
post processing. In this paper, we present a simultaneous
segmentation and inhomogeneity correction (IC) method based
on active contour algorithm. It uses a generative model which
is a modified Mumford-Shah functional proposed by Chan and
Vese. The piecewise constant image model in the functional
is multiplied by an underlying intensity inhomogeneity field.
The inhomogeneity field and piecewise constant function are
jointly estimated in an iterative way including solving the asso-
ciated contour evolution equation and updating corresponding
parameters. The algorithm is implemented using the level set
framework. Test on MRI leg data shows our method achieves
more accurate segmentation and IC results than other related
methods in MR images with strong intensity inhomogeneity.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a popular tool for

exploring anatomy of human body and diagnosing diseases.

In the past decades, numerous computerized image process-

ing methods have been developed to facilitate the understand-

ing of MR images. However, intensity inhomogeneity has

been an issue affecting the quality of post processing. It could

be caused by spatially varying sensitivity of radio frequency

(RF) imaging coils, magnetic permeability and dielectric

property of imaged objects, rendering smoothly changing

bright and dark regions in the magnitude images. It becomes

severer in the cases of large field of view (FOV) such as

whole body imaging. Under the scenario, both anatomy and

inhomogeneity field contribute to the intensity value changes

across the images. Without inhomogeneity correction (IC),

the intensity-driven segmentation/registration methods can-

not distinguish the effects of these two components and will

fail.

Intensity inhomogeneity can be partly alleviated by

prospective shimming techniques, while the object-

dependent effect requires more retrospective efforts. To

do so, usually an IC step is inserted into the early stage

of processing pipeline to accommodate the remaining

steps. The main task of a IC method is to separate
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the effect of anatomical component of intensity change

from inhomogeneity to make an accurate inhomogeneity

estimation. Filtering based methods have been designed

to extract the low frequency components of images as

inhomogeneity[1], [2], but the transitions of anatomy

and inhomogeneity can’t be simply separated by their

spatial frequency components. Due to the coupled nature

of the problem, it’s appealing to do segmentation and

intensity inhomogeneity field estimation under an unified

framework to make both of them more effective. In fact,

many IC methods are designed in this way. For example,

the segmentation methods based on maximum likelihood

(ML) or maximum aposteriori (MAP) type parametric

probability distribution estimations have been adapted

to take account of intensity inhomogeneity[3], [4], [5].

However, they are sensitive to initial values and require

manual interactions due to the high dimensionality of

parameter space. Another example is the widely used N3 [6]

method which tries to sharpen the peaks in the histogram of

(log-transformed) intensity values of different tissues that

have been blurred by inhomogeneity. Although it doesn’t

directly result in a segmentation, it’s aimed to make a

more accurate classification of tissues based on intensity.

However, the above methods do not exploit any geometric

information in the image such as the pixel connectness. On

the other hand, active contour [7] has been successfully

used for segmentation in medical images. The advantage of

active contour based methods is they exploit both intensity

and geometric information of the images to be segmented.

To this end, a generative model of MR image accom-

modating both anatomical and inhomogeneity information

is proposed in this paper. It’s a modified version of Chan-

Vese’s(C-V) [8] Mumford-Shah(M-S) functional. Different

from their method, which models images as piecewise

constant functions, the proposed model takes into account

the inhomogeneity by multiplying the image a smoothly

changing field. The boundaries and the field are jointely

estimated, using the level set framework. [9] We demonstrate

on a dataset that our method outperforms the original C-V’s

or M-S functional, as while as the N3 pluses M-S method.

II. METHOD

A. Mumford-Shah functional and Level Sets Based Segmen-

tation

In medical image segmentation, level set, or geometric

active contour based methods have been paid much atten-

tion to. Particularly, C-V’s method and its variations have

been reported in multiple segmentation tasks. It segments a
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bimodal image by minimizing a simplified Mumford-Shah

functional[10]:

F (�C, c1, c2) =λ1

∫
inside( �C)

(I(x) − c1)
2dx

+ λ2

∫
outside( �C)

(I(x) − c2)
2dx

+ µ · Length( �C) (1)

where x is the spatial variable, c1 and c2 are the mean

values of intensity inside and outside the closed curve �C

which is the boundary of segmented region. λ1, λ2 and

µ are user defined weighting factors. The first two terms

ask for the fidelity of the image to a regionwise constant

valued function, with the region enclosed by �C. The function

values inside/outside the regions are defined by c1 and c2

respectively. The third term asks smoothness of the curve.

This formula suits the images in which there are two kinds

of regions(tissues) with different constant intensity values in

each one and smooth boundary. The model for images with

more than two distinct constant-valued regions can be found

in [11], [12].

In [10], the problem is solved by an iterative scheme.

In each iteration, first with c1 and c2 fixed, �C evolves by

gradient descent, and then, c1 and c2 are updated according

to the new �C position. Steps repeat until convergence. In the

curve evolution step, the gradient flow can be written as:

�Ct =λ2(I(x − c2))
2 �N − λ1(I(x) − c1)

2 �N

− µ · κ(x) �N (2)

where κ and �N are the curvature and normal direction of �C.

This curve evolution is solved using the level set framework,

where �C is implicitly represented as the zero level set of

a function φ(x) such that �C = {x, φ(x) = 0}. φ(x) is

usually initialized to be the signed distance function of �C[9].

Under this framework, (2) can be converted to the equivalent

problem:

φ(x)t = − (λ2(I(x) − c2)
2 − λ1(I(x) − c1)

2

− µ · κ(x))|∇φ| (3)

where κ is the curvature of φ: κ = ∇ · ∇φ
|∇φ| . After updating

φ, the new position of �C can be retrieved by extracting the

zero level set of φ.

Different from the original M-S’s functional, the region-

wise constant model of C-V’s method takes into account

the regional means c1 and c2 as global properties and is

less sensitive to initial condition. But it’s not plausible when

intensity inhomogeneity exists, and additional treatment is

needed, which will be discussed next.

B. Integrating Inhomogeneity Field into C-V’s Model

A few models have been used to describe the effect of in-

tensity inhomogeneity in MRI. A widely used one considers

it as a smooth field (b) multiplied to the inhomogeneity-free

image then pluses noise[13]:

I(x) = Ih(x) × b(x) + n(x) (4)

where Ih is an ideal image free of inhomogeneity and n is

a noise field[13].

We modified (1) for images with inhomogeneity fields as:

F (�C, c1, c2, b) =λ1

∫
inside �C

(I(x) − c1b(x))2dx

+ λ2

∫
outside �C

(I(x) − c2b(x))2dx

+ µ · Length( �C) (5)

In this formula, c1 and c2 are the regional means in the inho-

mogeneity free Ih and then Ih is corrected by inhomogeneity

field b to approximate the measured intensity value I . The

gradient flow of (5) with fixed c1, c2 and b is:

�Ct =λ2(I(x) − c2b(x))2 �N − λ1(I(x) − c1b(x))2 �N

− µ · κ(x) �N (6)

and the corresponding level set equation becomes:

φ(x)t = − (λ2(I(x) − c2b(x))2 − λ1(I(x) − c1b(x))2

− µ · κ(x))|∇φ| (7)

We propose the following iterative algorithm (see Algo-

rithm 1) for simultaneous segmentation and IC (superscripts

indicate number of iteration).

In each iteration, b is parameterized as a polynomial of x

and is estimated by minimizing the cost:

b(i) = argmin
b

λ1

∫
inside( �C(i))

(I(x) − c
(i)
1 b(x))2dx

+ λ2

∫
outside( �C(i))

(I(x) − c
(i)
2 b(x))2dx (8)

Algorithm 1 Simultaneous segmentation and inhomogeneity

correction

1. Initialization: compute c
(0)
1 , c

(0)
2 , b(0)(x) and φ(0)(x) from

�C(0)

Repeat step 2-4 until convergence.

For the ith iteration:

2. Update level set function corresponding to �C(i−1) using

(7) with values of c
(i−1)
1 , c

(i−1)
2 and b(i−1);

3. Update to c
(i)
1 , c

(i)
2 with �C(i) and b(i−1);

4. Update to b(i) by minimizing the cost function (8)

A possible alternate to this is to use original M-S model,

which models a image as a regionwise smooth instead

of constant-valued function. But the lacking of the global

properties in the constraints makes the method sensitive to

initial condition and thus less robust. The comparison of our

proposed and original M-S method will be shown in the

following section.

Initial condition sometimes becomes critical to results of

many curve evolution based methods. Here in our testing,

we chose different kinds of initial curves for our method and

original M-S functional approach. For original C-V and our

method, arrays of squares were chosen as initial curves, while
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for original M-S model, initial curve is a single rectangle.

The reason is C-V’s method allows numerous separated

initial curves because the initially isolated regions are still

”connected” via the regional means (c1 and c2). However,

in the original M-S model, the piecewise smooth functions

estimated in isolated regions are not related unless they are

topologically connected. Therefore, for segmenting single

connected objects, the number of initial curves shouldn’t be

large, and is usually one to keep the region(s) as connected

as possible. There are two reasons of choosing arrays of

squares chosen as initial curves: first, theoretically speaking,

the estimated inhomogeneity field is independent to anatomy.

Therefore, ”uniformly” distributed internal and external re-

gions at the beginning can eliminate the influence of anatomy

most effectively and make the estimated inhomogeneity field

more accurate. Second, for a ”dense” distributed initial curve

set, the true boundary should be close to part of it, method

will be faster to reach global optimal.

III. EXPERIMENT

The proposed method was tested in a segmentation task

to extract muscle region in a T1 weighted leg MRI data set.

The dataset is with strong RF coil sensitivity inhomogeneity

(one slice shown in Fig. 1(a) as an example). The image

was acquired on a male subject by a Siemens Triotim 3T

scanner, with gradient echo / inverse recovery sequence and

body coil. The matrix size of axial slice of is 256x144 with

pixel size 0.88mmx1.5mm.

First the entire leg region was extracted from background

by a simple gray level thresholding. All the methods tested

were performed in this region which contains fat (outer) and

muscle (inner, surrounding the thighbone) and is suitable for

bimodal segmentation task.

Four methods were tested. M1: C-V’s method, with λ1 =
λ2 = 1 and µ = 0.03. M2: our method, which parameterizes

the inhomogeneity field b as a 2D third order polynomial,

other parameters and initialization are the same as in M1.

Initial curves for M1 and M2 are the outlines of evenly

spaced arrays of squares (as in Fig. 1(a)), size is 10x10

pixel (distance between neighboring squares is the same

as their size), please note that although the initial regions

are topologically isolated, the evolution of their boundaries

are coupled because they share the same the regional mean

values (c1 and c2) as global properties. M3: method in [11],

which optimizes the original M-S functional[8], it models

ideal images as regionwise smooth functions instead of

regionwise-constant ones, so it could handle image with

intensity inhomogeneity. Parameter: α = 200, β = 1,

γ = 0.03 (see the definitions in [11]), initial curve is the

outline of a single rectangle as in Fig. 1(b), the reason is the

original M-S functional doesn’t carry any global properties

as C-V’s version and if the initial regions are isolated, the

curves will not affect each other until they merge. M4: a two-

step method, first a non-segmentation-associated IC method

N3[6] was performed on original image and then M3 was

applied to the output image. Other parameters and initial

condition are the same as M3 except α = 500 for heavier

Sensitivity Accuracy Specificity

M2 0.9523 0.9704 0.9832

M3 0.9304 0.9649 0.9893

M4 0.8582 0.9319 0.9841

TABLE I

PERFORMANCE COMPARISON OF THE METHODS

spatially variability constraint of approximated image. Curve

evolution was implemented by level set method in matlab.

N3 IC is downloaded as an itk(http://www.itk.org) class [14].

All parameter are selected by trial and error to maximize the

performances.

IV. RESULT

Two slices (named S1 and S2) in the tested dataset are

shown to demonstrate the performance of different methods.

As in Fig. 1(c) as an example, M1 failed to detect boundary

of muscle in dark area in all slices because of intensity in-

homogeneity. M2 succeeded in both images in Fig. 1(d) and

Fig. 1(l). The calculated inhomogeneity fields (Fig. 1(f) and

1(n)) indicate good approximation of inhomogeneity patterns

each slice respectively. The ”quotient images” (underlying

images in Fig. 1(d) and 1(l), original images divided by

estimated inhomogeneity fields) eliminated most of inho-

mogeneity. For M3-4, outlines of single rectangular regions

were used as initial curve. By careful setting of the position

of initial curve, right result can be reached on S1 (Fig.

1(g)1(i)). However, the same initial curve leads to erroneous

result in S2 (Fig. 1(o)1(q)), and intensity inhomogeneity is

only partially corrected by N3(the underlying image of Fig.

1(i) and 1(q)).

For quantitative analysis, we manually segmented 10 axial

slices evenly spaced in the tested dataset as gold standard,

each automated method (M1-M4) is with fixed parameters

and initial conditions mentioned above for segmentation of

all these slices. If a pixel is classified by both manual and an

automated method as muscle, it’s considered as true positive.

If it’s classified as fat by manual method but as muscle by

automated method, it’s considered as false positive, etc. Since

M1 didn’t achieve any visually acceptable result in all slices,

we only compared the sensitivity/accuracy/specificity of M2,

M3 and M4 and the results are listed in Table I.

The quantitative results shows our method performs better

than M3 and M4 in terms of sensitivity and accuracy, and is

tied with them in term of specificity. However, the results of

M3 and M4 were reached after many trial and error attempts

since they are very sensitive to the position of initial curve

and the parameters (especially the α value). To the contrary,

our method only needs to tune the size of the initial squares

to change result.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a generative image model is presented. Under

this model, image segmentation and IC can be performed

jointly, by the level set based active contour method. Testing

result shows the effectiveness of the proposed model.

8047



 

 

(a)

 

 

(b)

 

 

M1

0

0

0

0

0

0

(c)

 

 

M2

(d)

M2

(e)

 

 

M2

(f)

 

 

M3

(g)

M3

(h)

 

 

M4

(i)

M4

(j)

 

 

(k)

 

 

M2

(l)

M2

(m)

 

 

M2

(n)

 

 

M3

(o)

M3

(p)

 

 

M4

(q)

Fig. 1. Results of 4 methods on two slices named S1 and S2. 1(a): initial
curve (green in the figure)position of M1 and M2 with underlying S1; 1(b):
initial curve position of M3 and M4; 1(c): result of M1 on S1 with the
final curve green; 1(d): result of M2 on S1 with original image corrected
by estimated inhomogeneity field; 1(e), 1(f): binary mask and estimated
inhomogeneity field by M2 on S1 ; 1(g) - 1(j): segmentation results of M3
and M4 on S1 with the underlying images of 1(i) corrected by N3; 1(k):
original S2; 1(l) - 1(q): segmentation results on S2 by M2, M3 and M4;

Active contour based segmentation is not the only way that

involves both the intensity values and geometric connectness

between pixels. Interesting reports that do segmentation and

IC jointly using Markov Random Field (MRF) theory can be

found in [15], [16].

Future work includes incorporating prior shape knowledge

for segmenting image with even weaker organ boundaries.

And testing our method on MR images of other parts of

body.
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