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Abstract—The main purpose of this paper is to show the 

potential of tissue motion estimation in ultrasound imaging for 

the diagnostic of pelvic floor disorders. We propose to evaluate 

the tissue motion using a method based on a local deformable 

model and on image features (local phase and orientation) 

extracted from the monogenic signal. The proposed method is 

well adapted to the pelvic organ deformations and estimates 

motion with subpixel precision without the need for 

interpolation. The estimated motion is used to visualize the 

bladder local deformation and to extract quantitative figures 

such as the deformation parameters and the bladder angle 

variation. These results could potentially be interesting to 

characterize the degree of the pelvic organ prolapse. 

I. INTRODUCTION 

Pelvic floor disorders affect up to one third of women 

worldwide, with a peak incidence at age 60 [1]. Although 

conservative management should be systematically proposed 

[2-3], surgery remains the most relevant treatment for 

symptomatic pelvic organ prolapse (POP). POPs, severe 

enough to warrant surgical correction, have been noted in 

approximately 11% of the general population women. This 

figure is anticipated to increase in prevalence as our 

population ages [4-5].  Unfortunately, 30% of these 

surgeries are repeat procedures [6], suggesting that a better 

understanding of the causative mechanisms underlying 

clinical presentations might improve the surgical approach. 

Indeed, pelvic organ support defects are mostly assessed by 

a clinical quantification system, the so called POPQ, created 

in 1996 and updated in 2010 to S-POP, using the hymeneal 

plane as reference landmark [7].  While the POPQ appears to 

be very specific, objective and reproducible, it is interpreted 

as being difficult to learn and incorporate into daily practice. 

Furthermore, clinical examination only evaluates POP 

through the motion of vaginal walls. Therefore, dynamic 

pelvic MRI has been introduced in the beginning of the 

nineties [8], providing images at rest and during maximum 

strain and using the mid-pubic line as reference landmark.  

Although MRI is useful to assess POP qualitatively and to 

describe its components in terms of anatomy [9], it suffers 

from some limitations, mainly: considerable discrepancies 

between POP quantification using MRI and clinical 

examination, no real-time assessment, cost and access 

restrictions [9-10]. 

 Ultrasound (US) imaging is a noninvasive, relatively 

inexpensive and real-time technique. Its increasing 

availability in the clinical setting, and the recent 

development of 3D and 4D US, have renewed interest in 

using this modality to image pelvic floor anatomy as a key to 

understanding dysfunction [11]. Some recent studies have 

shown encouraging results using transperineal (TP) 

ultrasound [10, 11]. However it has been evaluated as an 

alternative tool to clinical and MRI examinations in the 

quantitative and qualitative assessment of pelvic floor 

disorders in only one study [12].   

Thus, the main objective of this paper is to evaluate the 

possibility of using the tissue motion estimated from US 

image sequences for the diagnostic and evaluation of the 

degree of symptomatic pelvic organ prolapsed. 

Tissue motion estimation in ultrasound imaging is an 

active research domain, with various applications like heart 

motion or elastography. This intensive research is motivated 

by numerous challenges such as the low SNR of US images, 

the tissue deformation, the speckle decorrelation or the out 

of plane motion (when 2D image sequences are exploited) 

(e.g. [13] and references therein). In order to tackle these 

limitations several methods were proposed. The standard 

method in ultrasound motion estimation is the speckle 

tracking [14]. Based on an assumption of rigid local 

translations, it estimates the 2D (or recently 3D) translations 

using cost functions such as cross-correlation or sum of 

absolute differences [15]. This method has two main 

limitations. First, even for small blocks, the assumption of 

rigid translations may not be valid in tissue motion. The 

complexity of the displacement to be estimated requires the 

use of deformable methods using parametric motion models, 

like for example in [16-18]. Second, in almost all the 

applications, a subpixel motion estimation precision is 

required. To obtain such a precision, classical methods, such 

as speckle tracking, need to estimate the motion on 

interpolated images or signals. This represents a major 

limitation in terms of processing time and memory 

requirements. To overcome this limitation and obtain 

subpixel estimations without the need for interpolation, 

methods based on the instantaneous phase were recently 

proposed. Applied to radiofrequency (RF) signals or images, 

they use the phase of the classical analytical signal in 1D or 

the phases of multi-dimensional analytical signals [19] in 2-

D in order to propose iterative or analytic approaches to 

estimate subpixel delays [20, 21]. Besides, Felsberg et al. 

presented in [22] a generalization of the analytical signal to 
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two dimensions, called the monogenic signal. It gives access 

to the 2D local phase, orientation and amplitude. They 

showed in [23] how these measures can be applied to optical 

flow estimation. We have shown recently in [24] how the 

monogenic signal can be used to construct 2D translation 

estimators, included in the speckle tracking method. In 

addition to its performances in terms of precision and 

rapidity (reported to be at least ten times faster than classical 

methods for the same accuracy), we have shown that this 

estimator can be applied to all types of ultrasound images, 

RF, envelope and B-mode. 

Our purpose in this paper is to propose a novel method for 

pre-operative quantitative assessment of POP, based first on 

2D TP ultrasound, second on a method of motion estimation 

based on a deformable bilinear model and finally on the 

monogenic signal. We have deliberately restricted our 

approach to the anterior compartment (bladder prolapse) for 

this feasibility and preliminary study.  

II. ULTRASOUND ACQUISITION AND METHODS 

A. Ultrasound acquisition 

US imaging was performed using Voluson 8 expert 

ultrasound system (GE Ultrasound, Zipf, Austria) with a 4-8 

MHz curved array 2D transducer. Ultrasound gel was 

inserted into a latex free probe cover, the probe was then 

inserted into the cover for hygienic reasons, and more gel 

was applied to the outside of the upright probe. Ultrasound 

was performed with the probe positioned against the vulva in 

the mid-sagittal plane of subjects in dorsal lithotomy 

position, with a filled bladder. Care was paid to avoid exert 

undue pressure on the perineum so as to allow full 

development of POP. To be satisfactory, the mid-sagittal 

view had to include the pubic symphysis, the urethra and 

bladder neck, the vagina, cervix, rectum and anal canal. 

Reference images were flagged at rest and after Valsava 

maneuver. Dynamic sequences (20 fps) were obtained using 

the cineloop function, recorded from rest to maximum strain.  

B. Method of motion estimation 

As explained in the introduction, numerous motion 

estimation methods adapted to ultrasound images have 

been proposed in the literature. In this paper, we propose a 

hybrid technique, taking advantage from the method called 

BDBM (Bilinear Deformable Block Matching) in [18] and 

the 2D delay estimator based on the monogenic signal 

phase presented in [24]. Moreover, the 2D dense motion 

fields estimated between pairs of consecutive images are 

added on the whole sequence [25]. 

The method proposed here to evaluate the motion of pelvic 

organs has several advantages: 

- Locally, the motion of one block of pixels is 

approximated by a bilinear model which takes into 

account rigid translations, rotations, dilatations and 

shear deformations. The utility of such a model over a 

classic rigid translation model was shown in [18]. 

- In order to estimate the eight parameters of the 

bilinear model, we proposed in [18] to estimate the 

translations of small regions of interest. We propose in 

this paper to estimate these 2D local delays by using 

the monogenic signal phase. This is particularly 

interesting in our application for two main reasons: 

first, subpixel estimations are achieved without the 

need for interpolation, which allows a very small 

computational time; second, this estimator can be 

applied on B-mode images, which are the only ones 

available from the scanner used for the patients’ 

examination. 

The main steps of the proposed motion estimation method 

are given in Figure 1. 

 
Figure 1. Flow diagram of the proposed motion estimation method. (a) The monogenic signal corresponding to each of the 

N B-mode images of the sequences is processed [22]. (b) From the monogenic signals im, we extract the N local spatial 

phases and the N local orientation maps, needed for motion estimation [24]. (c) For each couple of consecutive images, the 

dense motion fields u and v are estimated using the BDBM method and the monogenic 2D delay estimator [18,24]. (d) The 

N-1 estimated motion maps are transformed (registered) so that they correspond to trajectories of physical features of the 

first image and added afterwards (U and V) [25].  

III. RESULTS 

For this feasibility study, the shown images were recorded 

from a 62 year old woman suffering from a symptomatic 

POP warranting surgical treatment. Cervix, anterior and 

posterior vaginal segments were staged according the S-POP 

[7] and estimated as stages 2, 3 and 1 respectively. The 

sonographic examination lasted about 15 minutes. The 

procedure was performed by a gynecologic physician. 

Anatomical mid-sagittal view is shown in figure 2. No 

abnormalities were found during sonographic exploration. In 

particular, both ovaries, myometrium and endometrium had 

a normal appearance, and bladder wall thickness was usual. 

Pelvic floor is generally divided into 3 compartments: 

anterior (bladder and urethra), middle (uterus, cervix and 

vagina) and posterior (rectum and anal canal). As it was 

mentioned earlier, our protocol only included the anterior 

one. 
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landmark. In this example, we have chosen perineum skin as 

reference (see Figure 4). However, it might be applied to 

mid-pubic or H lines [8,9], commonly used in pelvic 

dynamic MRI. We believe that calculating angle variation 

will bring interesting information for both quantification and 

qualitative assessment of POP. Figure 5(d) summarizes 

angle value variations according to each frame of the 

sequence. We notice, as expected, that the angle value 

increases while the descent is developing.  

    
(a) (b) (c) (d) 

Figure 5. Estimated parameters of the bilinear transform (a-translations, b-scaling factors, c-shears) for the white rectangle 

annotated 1 in Figure 3(a) (solid lines correspond to the lateral direction and dashed lines to the axial direction), (d) α values 

according to each frame of the sequence. On Figure (d), the arrow points out a slight discontinuity which might be caused by 

the patient relaxing the effort. 

IV. CONCLUSION 

Our protocol seemed to be efficient for pre-operative 

assessment of POP. Because of the use of a motion 

estimation algorithm, it could represent a new tool for 

quantification of pelvic floor disorders. Before that, it has to 

be compared with clinical examination and dynamic pelvic 

MRI. Nevertheless, we have the feeling that it could easily 

perform the metric calculation supported by the POPQ, with 

the key advantage to propose a quasi-automatic approach 

and a direct and real-time observation of concerned organs. 

We also believe that it could be applied to 3D acquisitions in 

order to explore the volumetric dimension. Further studies 

are thus required to define its true efficiency.  
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