
  

 

Abstract— As imaging, computing, and data storage 
technologies improve, there is an increasing opportunity for 
multiscale analysis of three-dimensional datasets (3-D). Such 
analysis enables, for example, microscale elements of multiple 
macroscale specimens to be compared throughout the entire 
macroscale specimen. Spatial comparisons require bringing 
datasets into co-alignment. One approach for co-alignment 
involves elastic deformations of data in addition to rigid 
alignments. The elastic deformations distort space, and if not 
accounted for, can distort the information at the microscale. 
The algorithms developed in this work address this issue by 
allowing multiple data points to be encoded into a single image 
pixel, appropriately tracking each data point to ensure lossless 
data mapping during elastic spatial deformation.  This 
approach was developed and implemented for both 2-D and 3-
D registration of images.  Lossless reconstruction and 
registration was applied to semi-quantitative cellular gene 
expression data in the mouse brain, enabling comparison of 
multiple spatially registered 3-D datasets without any 
augmentation of the cellular data. Standard reconstruction and 
registration without the lossless approach resulted in errors in 
cellular quantities of ~ 8%. 

I. INTRODUCTION 

YE-BASED in situ hybridization (ISH) is an 
experimental method that enables semi-quantitative 

detection of gene expression in every individual cell across 
an entire thin slice of tissue [1]. When combined with rapid 
tissue sectioning, robotic hybridization equipment, and 
automated microscale robotic imaging, the process becomes 
high-throughput (HT) ISH [2]. HT-ISH allows microscale 
components to be characterized for every cell throughout an 
entire organ or organism. In the past, comparing HT-ISH 
datasets required focusing on and delineating spatial areas of 
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interest to compare between the different datasets [3]. The 
research presented here is motivated by the desire to 
accurately and automatically perform such localized 
comparisons across the entire HT-ISH datasets without 
human interaction. Critical to this goal is the ability to 
achieve spatial co-registration of the datasets to be 
compared. The data can differ to some degree in shape due 
to being acquired from different organisms.  In addition, the 
sectioning process deforms that data. Standard approaches 
for 2-D and 3-D deformable registration move pixels or 
voxels to different locations in space, sometimes with 
multiple pixels or voxels attempting to re-locate to the same 
spot, and sometimes with certain destination points not 
being mapped to any particular pixel or voxel. These 
situations are normally handled by interpolation, which is 
generally fine for intensity-based data [4].  However, HT-
ISH gene expression data has been quantified to identify 
what level of gene transcripts are expressed in each cell 
(strong, medium, weak, or not detected) using Celldetekt 
[5].    Comparing the relative number of strongly expressing 
cells between two datasets is highly informative, and this 
comparison would be significantly damaged if some cells 
duplicate or disappear due to deformation.  In order to 
perform accurate comparisons, we developed an approach 
for lossless 2-D and 3-D registration of quantified cellular 
image data. 

II. METHODS 

A. Image Data 

For developing and demonstrating lossless reconstruction 
and registration, we used two HT-ISH datasets representing 
Corticotropin releasing hormone (Crh) gene expression in 
both the wild-type and MECP2 mouse brains.  MECP2 is a 
mouse model for Rett Syndrome, a genetic neurological 
disorder [6, 7]. Identifying local differences in Crh gene 
expression between normal and MECP2 brains can provide 
information about the molecular mechanisms underlying 
Rett Syndrome [3]. The preparation of the image data is 
described in McGill et al [3]. Briefly, each image dataset 
consisted of 350 images, with each of these representing a 
25 m thick tissue slice of serial sectioned adult mouse 
brain. Tissue slices were digitized at 1.6 m per pixel, 
providing sufficient resolution to see cell bodies (~m 
micron diameter) and to semi-quantitatively characterize 
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levels of Crh gene expression within each cell.  Using 
Celldetekt  [5], each detected cell is assigned as having 
Strong (red), Moderate (blue), Weak (yellow), or Not 
Detected (grey) levels of gene expression.  One type of 
output produced by Celldetekt is a downsampled 
representation of the tissue to the scale where each pixel 
represents one cell (~12 m per pixel). Thus, counting 
pixels of different colors enables comparative analysis of 
cell populations. 

B. Lossless encoding 

During the tissue sectioning process, distortions take 
place.  In order to undo these distortions and reconstruct an 
accurate 3D volume of the mouse brain from 2D tissue 
slices, rigid and non-linear transformations are necessary. 
These transformations can force multiple pixels into the 
same pixel, or spread apart other pixels.  If applied to 
quantitative data, this would potentially distort quantitative 
cell counts. We registered two Celldetekt images to 
determine the amount of disruption to cell counts.  Then, we 
developed an approach that allows transformations to the 
Celldetekt images without loss of the quantitative cell 
counts.  To accomplish this, we first substituted Green for 
Yellow to represent weak expression.  Then we used the 
bitwise encoding depicted in Figure 1 to allow multiple cells 
to be represented in the same pixel. 

For the new lossless encoding, each pixel in an RGB 
image is represented using 24-bits.  Seven bits are allocated 
for strong expression, seven bits for weak expression, seven 
bits for moderate expression, and three bits for not detected 
expression.  The encoding in this fashion allows visual 
interpretation of gene expression in its native form, while 
maintaining quantitative data without loss despite multiple 
cells occupying the same pixel or voxel. During 2-D and 3-
D image transformations, cells are reassigned locations.  
Such transformations by nature will sometimes map two 
pixels to the same pixel space, or fail to map other pixels to 
the new space.  In this lossless implementation of image 
transformations, if two pixels are mapped to the same space, 
they are encoded into that spot using the lossless encoding 
method.  After initial transformation, pixels left behind and 
not mapped were detected. Then a breadth-first search was 
applied to find a nearby pixel that was mapped over to the 
new space, and the left behind pixel is also mapped to the 
new location of the nearby pixel using lossless encoding. 

C. Image Processing Steps 

To test lossless encoding in maintaining quantitative 
information during the volumetric reconstruction and 
volume-to-volume registration process, we proceeded 

through the steps depicted in Algorithms 1 and 2 with our 
two image datasets.  New code for applying the steps to the 
lossless-data was written in the Python programming 
language (www.python.org) and utilized the Python Imaging 
Library (www.pythonware.com). The basic approach was to 
compute necessary image spatial deformations on rescaled 
raw images of the HT-ISH tissue sections, and then apply 
the spatial changes not only to these images, but also to the 
encoded Celldetekt quantified gene expression image data as 
well as to a set of artifact masks. First, Celldetekt and 
Deftekt [8] images were generated from the serial image 
data. Deftekt produced binary masks indicating where 
artifacts, such as dust particles, were in the image [8]. 
Deftekt also produced a set of deformations that will repair 
tears introduced to the tissue sections from the data 
preparation process. After applying the fixes to the tears, 
image-to-image rigid registrations (translations, rotations) 
and elastic registrations were computed and warps applied.  
2-D elastic registrations were calculated using bUnwarpJ [9, 
10] as described in Kindle et al [8].  Each image in the now 
aligned image series was downsampled 50% to achieve 
isotropic resolution at 25 m, thus generating isotropic 
volumes of cellular gene expression for the mouse brain.  
This downsampling utilized the lossless encoding method 
for compressing the data. 3-D rigid registration minimized 
the sum of the squared distance for eight manually identified 
landmarks in the mouse brain. Elastic registration then 
utilized drop-3d software [11] to compute warps. 3-D 
transformations were also applied using the lossless 
encoding method.   

 

Fig 1. Encoding gene expression.  Information for multiple cells can 
be stored within a single pixel or voxel. 

  Algorithm 1 Lossless 2-D to 3-D Reconstruction  
L1: Start with set of serial 2-D images 
L2: Quantify cellular gene expression in L1 images using Celldetekt  
L3: Generate artifact mask images from L1 images using Deftekt 
L4: Fix tears in L1 images using Deftekt 
L5: Compute 2-D image-to-image rigid registration for L4 images 
L6: Compute 2-D image-to-image elastic warps for L5 images using 
bUnwarpJ 
L7: Compress L6 volume to isotropic resolution 
L8: Use lossless encoding algorithms to apply transformations 
computed in steps L4 - L7 to L2 images. 
L9: Use lossless encoding algorithms to apply transformations 
computed in steps L4 – L7 to L3 images.  

 

Algorithm 2 Volumetric lossless registration  
V1: Compute 3-D  translations between L7 volumes to minimize 
distance between landmarks 
V2: Compute 3-D elastic warps using drop-3d between V1 volumes 
V3: Using lossless encoding algorithms,  apply transformations 
computed in steps V1 and V2 to L8 volumes to generate aligned artifact 
mask volumes 
 V4: Using lossless encoding algorithms,  apply transformations 
computed in steps V1 and V2 to L9 volumes to output registered 
cellular gene expression data 
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III. RESULTS 

Cell counts for strong, medium, weak, and no gene 
expression were compared before and after image 
deformation without using the lossless approach (Table 1).  
Using nearest-neighbor assignment, 2.9% of pixels were 
vacant in warped result, and 2.4% were duplicated.  In some 
images, these numbers were 8% and one pixel was 
duplicated 5 times. The lossless approach, on the other hand, 
when applied successfully maintained the exact same cell 
counts for 2-D  and 3-D non-linear registration. 

The lossless approach is designed to allow visualization 
of quantified cellular gene expression in addition to 
maintaining accurate cell counts after deformations.  The 
visualization of a 2-D image after registration is shown in 
Figure 2.  The different pixels clearly indicate gene 
expression in each cell and which pixels contain multiple 
cells.  With a trained eye, the gene expression levels of the 
pixels containing multiple cells can be decoded in many 
common instances. 

IV. DISCUSSION 

The presented approach successfully reconstructed 
quantitative Celldetekt data from serial sections represented 
by 2-D images into a 3-D dataset using elastic registration, 
and performed 3-D registration upon the dataset to bring it 
into spatial co-alignment with another 3-D dataset.  It 
performed these reconstructions using a lossless registration 
approach, resulting in conservation of cell counts in the 
spatial modified data. One of the limits of the approach is 
that only 7 cells of each gene expression strength could fit 
into each voxel (just 3 for Not Detected expression), with a 
possible total of 24 cells in a voxel.  Switching to a binary 
encoding would allow for (127 + 127 + 127 + 7) = 388 cells 
to be in a single voxel using the same number of bits 
currently used for each cell type.  The encoding may be able 
to be further optimized to allow for better viewing of non-
expressing cells without relying on post-processing images. 

The 3-D warp matrix computed as part of this work did 
not achieve sufficient alignment in the areas of anatomical 
interest. To be useful in this specific application, sub-
regional features on the order of 500 m in diameter (~5% 
total data dimension) need to align precisely in 3-D. The 
registration approach, while globally improving spatial 
alignment significantly, did not properly align these sub-
regional features. Nevertheless, if a better warp matrix 
calculation is found, the proposed lossless encoding 
approach would be applicable to that method. One 
promising method that would bypass direct computation of a 
warp matrix is the use of deformable space, such as 3-D 
subdivision atlases [12]. This technology is in active 
development for multiregional atlases such as would be 
appropriate for the mouse brain.  A potential future 
application of this work will be in comparing the accuracy 
of the 3-D non-linear registration with an atlas-based 
approach. 
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TABLE I 
WARPING QUANTITATIVE DATA WITHOUT LOSSLESS APPROACH 

Pixel 
Type 

Before 
Warp 

After 
Warp 

# Gained (+) or Lost (-) 

Strong 
Expression 

796 782 -14 

Moderate 
Expression 

1020 1004 -16 

Weak 
Expression 

7272 7117 -155 

No 
Expression 

149338 147564 -1774 

No Cell 746790 748749 +1959 
    

Statistics for one example image on effects of warping on 
quantitative data without lossless approach.   

 

Fig 2. Visualizing the data using lossless encoding of gene 
expression. Red is strong, blue is moderate, and green is weak 
cellular gene expression.  Indicated pixels contain more than one 
cell: (a) 3 weak and 1 moderate; (b) 1 strong and 1 weak; (c) 1 strong 
and 1 moderate; and (d) 2 strong and 1 weak. 
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