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Abstract— The aim of this research is proposing a 3–D
similarity enhancement technique useful for improving the
segmentation of cardiac structures in Multi-Slice Computerized
Tomography (MSCT) volumes. The similarity enhancement is
obtained by subtracting the intensity of the current voxel and
the gray levels of their adjacent voxels in two volumes resulting
after preprocessing. Such volumes are: a.- a volume obtained
after applying a Gaussian distribution and a morphological top-
hat filter to the input and b.- a smoothed volume generated by
processing the input with an average filter. Then, the similarity
volume is used as input to a region growing algorithm. This
algorithm is applied to extract the shape of cardiac structures,
such as left and right ventricles, in MSCT volumes. Qualitative
and quantitative results show the good performance of the
proposed approach for discrimination of cardiac cavities.

I. INTRODUCTION

Each year many people die due to cardiovascular diseases

[1]. In particular, ventricles malfunction is one of factors

leading to cardiac failure.

The main function of right ventricle (RV) is to pump the

de–oxygenated blood toward the pulmonary artery; whereas

the left ventricle (LV) pumps the oxygenated blood through

the aorta to every part of human body.

Multi-Slice Computerized Tomography (MSCT) is a med-

ical imaging modality that performs simultaneous acquisition

of several slices using an array of X-rays detectors [2]. This

imaging modality provides the necessary time resolution for

representing the cardiac volume during the entire cardiac

cycle [3] after tomographic reconstruction [4].

Heart cavities segmentation is necessary for studying and

monitoring the cardiovascular function [5]. This is a very

interesting problem for the international research community.

However attaining an accurate solution is a challenge due to

the following undesirable aspects: a.- the heart is a moving

structure. b.- MSCT images show a low contrast between

blood and heart’s tissues. c.- noise and some artifacts are

present in the images.

Reduction of these limitations is a requirement for at-

taining an accurate segmentation. For attaining this goal,
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a preprocessing stage is proposed in [6]. It is based on

a similarity enhancement aiming at improving the region

growing segmentation. Such enhancement technique was first

formulated in bi–dimensional (2–D) space. This methodol-

ogy includes feature vectors obtained from preprocessed im-

ages considering Gaussian and morphological filters. Then,

a similarity image is obtained by taking into account the

similarity between the intensity of the current pixel and

the gray level of their adjacent pixels in both preprocessed

images. This similarity image includes uniform regions that

are easier to segment using region growing techniques.

Additionally, cardiac segmentation methods are important

in analysis and geometric modelling of cardiac images, in di-

agnosis of cardiovascular diseases and biomechanical model

construction [7]. Several cardiac segmentation methods have

been proposed. Among them are:

Fleureau et al. [8][9], proposed a new technique for gen-

eral purpose, semi-interactive and multi-object segmentation

in N-dimensional images, applied to the extraction of cardiac

structures in MSCT imaging. The proposed approach makes

use of a multi-agent scheme combined with a supervised

classification methodology allowing the introduction of prior

information and presenting fast computing times. The multi-

agent system is organized around a communicating agent

which manages a population of situated agents (associated

to the objects of interest) which segment the image through

cooperative and competitive interactions. The proposed tech-

nique has been tested on several patient data sets, providing

first results to extract cardiac structures such as LV, left

atrium, RV and right atrium.

A model–based framework for detection of heart structures

has been reported by Ecabert et al. [10]. The heart is

represented as a triangulated mesh model including RV,

LV, atria, myocardium, and great vessels. The heart model

is located near the target heart using the 3–D generalized

Hough transform. Finally, in order to detect the cardiac

anatomy parametric deformable adaptations are applied to

the model. These adaptations do not allow removal or inser-

tion of triangles to the model. The deformation is attained

by triangle correspondence. The mean point–to–surface error

reported when applying the model–based method to 28

MSCT volumes was 0.82 ± 1.00 mm.

A very efficient and robust algorithm for four heart cham-

bers segmentation was proposed by Zheng et al. [11]. They

developed that algorithm applying marginal space learning

and steerable filters over 137 MSCT sequences. The worse

Point-To-Mesh error obtained was 1.57 ± 0.48 mm.

Bravo et al. [12], performed LV segmentation and motion
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analysis in MSCT sequences using support vector machines

and a region growing technique. They proposed the valida-

tion test that considers several metrics obtaining an average

position error of 1.38 mm.

Zhuang et al. [13], developed a new technique for seg-

mentation of cardiac structures present on MRI, implement-

ing two methods called: locally affine registration and the

adaptative control point status free–form deformations. They

establish the correspondence of the anatomical structures

with the initial shapes using the first method. Then, they

refine local details using a constrained optimization scheme

based on the second method. The technique has been applied

to 37 MRI heart volumes. The rms surface–to–surface error

obtained was 4.1 mm.

The algorithm proposed in this paper is an extension of the

work reported in [14]. First, we introduce an extension from

two-dimensional to three-dimensional domain for calculating

the similarity enhanced volume [6]. In this extension, we

proposed a compact and simple mathematical formulation,

that enables quantification of the 3–D similarity enhanced

volume. Then, the segmentation is performed for both ven-

tricle cavities during the entire cardiac cycle.

II. METHOD

A. Cardiac Databases

Two human MSCT databases are used. The acquisition

process is performed using the helical computed tomogra-

phy General Electric medical system, Light Speed64. The

acquisition has been triggered by the R wave of the elec-

trocardiography signal. Each dataset contains 20 volumes to

describe the heart anatomical information for a cardiac cycle.

The resolution of each volume is (512×512×325) voxels.

The spacing between pixels in each slice is 0.488 mm and

the slice thickness is 0.625 mm.

B. Pre-processing

1) Cropping the database: In order to exclude anatomical

structures, that are not considered in this research, a plane

(Np) automatically calculated was used for separating LV

and left atrium. For this, it was necessary to incorporate

prior knowledge about the spatial location of several cardiac

structures. Thus, a point in the plane (denoted as Nc)

was located at the junction of the mitral and aortic valves

by a cardiologist. The normal to the plane orientation is

determined by the anatomical axis obtained by joining the

point Nc with the apex point. Subsequently, for cropping the

database, it was considered the following criterion: the gray

level of a voxel is assigned to zero if this voxel is located at

a distance less than zero with respect to Np; otherwise, the

gray level of the voxels is not modified. Figure 1 presents

the location of the plane in the heart and the axial views of

an original image and the corresponding cropped image.

2) Filtering: In order to enhance information about the

ventricles, a filtering process was applied to each database

using the following filters.

• Averaging Filter: an averaging filter is applied to the in-

put volumes. This kind of filter uses a 3–D kernel mask

(a) (b) (c)

Fig. 1. Cropped database. (a) Slice in the original volume. (b) Slice
in the cropped volume. (c) Heart + cropping plane.

where the gray level of the current voxel is changed

by the averaging gray level of a 3–D neighborhood of

the current voxel according to (1). The size of 3–D

neighborhood was 3× 3×3 voxels.

|f(x, y, z)− µ| > σ. (1)

where: f(x, y, z) is the gray level of the current voxel,

µ is the average gray level of a 3–D neighborhood of

the current voxel and σ is the standard deviation of the

input volume.

• Gaussian filter: this filter is applied to the input vol-

ume for reducing the noise and smoothing. A discrete

Gaussian distribution could be expressed as a density

mask according to (2). The size of density mask was

3×3×3 voxels. This filter is implemented by convolving

a Gaussian kernel with the input volume. [15].
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where 0 ≤ x, y, z ≤ n; n is the size of density mask

and σx, σy and σz are the standard deviation for each

spatial dimension.

• Morphological filters: these filters are based on non-

linear operations. They use neighborhoods or masks,

called structuring elements (SE). The SE may have

different shapes [16]. The parameter considered, for

these filters, was the radius that defines the size of SE.

The SE used corresponds with an ellipsoidal shape. The

Gaussian smoothed volumes (I), were processed using

morphological operators, such as: closing (•) and top-

hat. Equation (3), shows the mathematical formulation

of the top-hat filter. Figure 2, shows the axial slice view

of a processed volume using the described filters.

I • SE− I = (I⊕ SE)⊖ SE− I (3)

where ⊕ and ⊖ are the dilation and erosion operators,

respectively.

C. 3–D Similarity

The 2–D similarity enhancement technique reported in [6]

is reformulated and extended to 3–D space. This enhance-

ment technique allows to compare a smoothed version of

the input volume with respect to original volume processed

using an edge enhancement morphological filter. In the

smoothed volume the ventricles edges are blurred while
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(a) (b) (c)

Fig. 2. Filtering stage. (a) Averaging image. (b) Gaussian image.
(c) Top-hat image.

these edges are enhanced in the morphological volume. The

difference between the smoothed and edge enhanced volumes

is maximized at the edges and minimized in the rest of

image volume. The proposed 3–D similarity enhancement

can be structured as follows: a.− An original volume is

preprocessed with the top–hat morphological filter (resulting

in volume Vth) and the averaging filter (resulting in volume

Vp). b.− To capture the attribute in the volumes (gray level

of the voxels) both volumes are processed with a square

neighborhood centered on the current voxel. c.− Then,

equation (4) is applied in order to obtain the intra and inter

volume similarity. Equation (4) is simply the unweighted sum

of squares of the differences of the attribute.

In Fig. 3, the voxels belonging to Vth are denoted with

i and their respective sub-index. So, i1 represents the gray

level information of the voxel at position (x, y, z) (current

voxel); whereas i2, i3, i4 and i5 represent the gray level

values for the voxels (x, y +1, z), (x, y, z +1), (x-1, y, z)

and (x, y, z -1), respectively. Similarly, the voxels of Vp are

denoted with k and their respective sub-index.

S =

N+1
∑

n=2

[(i1 − in)
2 + (i1 − kn)

2 + (k1 − in)
2] (4)

where N ={2, 3, ..., 26} is the number of neighbor voxels.

In this way, 25 cases corresponding to the 26 adjacent vox-

els of the current voxel were analyzed. Each of the 25 cases

are obtained by incorporating the corresponding neighbors.

In the first case, two adjacent voxels were considered. In

the second were considered three adjacent voxels and so on.

For example, the third case includes the gray levels of four

neighboring voxels as shown in Fig. 3. It was determined,

empirically, that 6 adjacent voxels give the best compromise

between computational cost and quality of segmentation. The

resulting volume attains a enhanced local similarity as shown

in Fig. 4.a and Fig. 4.b.

D. Segmentation

The 3–D segmentation of ventricles is performed using a

region growing technique. This technique requires a seed

voxel. Starting from this seed, the algorithm extracts all

voxels belonging to connected regions. A voxel is added

to a region if and only if the voxel meets a predefined

criterion. In this research, the criterion was the comparison

of the gray level of the current voxel with respect to the

average gray level of a neighborhood around the seed voxel.

(a) (b)

Fig. 3. Similarity stage. a) Voxels into top-hat volume. b) Voxels
into averaging volume.

If the absolute difference is less than or equal than a certain

threshold the current voxel is added to the region. The

threshold was calculated as the product of the variance of

the input volume and a constant determined empirically by

the user. The segmentation process was performed on the

similarity enhanced volume S. To segment the LV the seed

was placed at the midpoint of the normal axis connecting

the plane and the apex while for the RV the seed point

was located using the Generalized Hough Transform (GHT),

proposed by Ballard [17]. A detailed description of the stages

of GHT is presented in [14]. In Fig. 4.c the location of seeds

in the ventricles is shown.

E. Validation

The validation of the algorithm proposed was performed

by comparing the automatic and the manual segmentation

generated by a cardiologist. The metrics used to quantify

this difference were: the area error, the contour error and the

Dice coefficient. These metrics are reported in [18] and [19].

III. RESULTS

A 3–D visualization of first segmented database is shown

in Fig. 5. The visualization of the internal walls of ventricles

is performed using the Visualization Toolkit libraries [20].

The LV is shown in red while the RV is presented in gray.

A second database that includes artifacts shown as horizontal

stripes (see Fig. 6) was segmented using the proposed

method. Qualitative results are shown in Fig. 7. Quantitative

results of the validation process are presented in Table I.

Error metrics were calculated for both segmented databases

and they are close to results reported in [14]. Results of de LV

segmentation are better than the RV segmentation because

RV segmentation is more difficult due to the high level of

contrast inhomogeneity of RV.

TABLE I

AVERAGE ERRORS OBTAINED FOR BOTH PROCESSED DATABASES

LV RV

Metric µ ± σ µ ± σ

Area error (%) 0.70 ± 0.66 9.67 ± 6.41

Contour error (%) 11.94 ± 0.27 15.91 ± 1.49

Dice’s coefficient 0.92 ± 0.03 0.87 ± 0.03
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(a) (b) (c)

Fig. 4. Similarity enhancement and seed localization process.
(a) Original image. (b) Similarity image.(c) Seeds placed on the
similarity Image.

Fig. 5. 3–D visualization of segmented ventricles. First database.

IV. CONCLUSIONS AND FUTURE RESEARCH

An algorithm based on similarity enhancement techniques

and region growing has been proposed. This algorithm

performs the 3–D segmentation of ventricular chambers (LV

and RV) in cardiac MSCT volumes. The originality of this

work is based on improving the quality of images before

the segmentation process by using a similarity enhancement

technique. The area errors obtained for LV are smaller

than errors reported in [14]. However, the contour errors

are greater. The proposed approach shows high accuracy

in LV detection which is reflected in both a mean area

error of 0.70 % and an average Dice coefficient of 0.92.

The proposed approach takes 3 minutes to extract both

cavities in a MSCT volume. The computational cost to

segment one entire sequence (6500 MSCT slices) was 1

hour using a Core 2 Duo 2GHz processor with 2Gb RAM.

A more extensive validation of the proposed algorithm is

still necessary. It should be tested using a larger number

of databases. Additionally, several parameters describing the

mechanical function of ventricles could be calculated such as

the volume and the ejection fractions. The validation should

include a comparison with results obtained in other cardiac

(a) (b) (c)

Fig. 6. Second validation database. (a) Axial view. (b) Coronal
view.(c) Sagittal view.

Fig. 7. 3–D visualization of segmented ventricles. Second database.

imaging modalities and other research groups.
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