
 

  

Abstract— In ultrasonic images, identification of speckled 
regions helps to estimate probe movement as well as improve 
performance of algorithms for adaptive speckle suppression 
and the elevational separation of B-scans by speckle 
decorrelation. By tracking FDS patch displacements over time 
we can calculate strain and detect tumor location. Previous 
studies for speckle detection were based on classification 
techniques which estimated parameters of the statistical 
distribution which were based on observation data and 
ultrasound echo envelope signal. However, in this study, we 
proposed a new combination of statistical features which were 
extracted from the ultrasound images and explored their 
properties for the speckle detection. These features were used 
as inputs to the unsupervised clustering algorithms for the 
speckle classification. We used five different types of 
unsupervised techniques and compared their performance by 
feeding different combinations of the statistical features.  In 
order to quantitatively compare statistical features and 
classification methods, as ground truth, we used simulations of 
cyst and fetus ultrasound images which were generated using 
Field II ultrasound simulation program[1]. Initial results 
showed that by combining two statistical models (K and 
Rayleigh distributions) we can get best speck detection 
signatures to feed unsupervised classifiers and maximize 
speckle detection performance. 
 

Index Terms— Ultrasound, Speckle detection, speckle 
tracking, pattern classification, unsupervised clustering, 
segmentation. 
 

I. INTRODUCTION 
-SCAN ultrasonic images unlikely carry unlikely 
images by scattering of ultrasound beams backed from 

structures within the body organ that is being scanned. Two 
major types of scatterings are diffused and coherent 
scatterings. Diffuse scatterings are caused when there are a 
large number of scatterers is with random phase within the 
resolution cell of the ultrasound beam and causes speckles in 
the reconstructed image; whereas the e coherent scattering 
arises when the scatterers in the resolution cell are in phase 
and causes light or dark spots in the image. Rayleigh 
distribution is the most common statistical model for the 
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envelope signal and assumes that a large number of 
scatterers per resolution cell exist. However in some 
ultrasonic imaging fields such as echocardiography, 
Rayleigh distribution fits to reflect properties of reflections 
from blood but fails with complex structures such as 
myocardial tissue [2].  
The K distribution , on the other hand, was initially designed 
for the envelope signal [3] and have been proposed to model 
different kinds of tissue in ultrasound envelope imaging [2, 
4-6]. This distribution also has the advantage to model both 
fully and partially developed speckle. The first-order 
envelope statistics have been thought to follow a Rayleigh 
distribution, but recent work has shown that more general 
models, such as the Nakagami, K, and homodyned K 
distributions better describe envelope statistics [7-9].  
With the current digital ultrasound imaging, the radio-
frequency (RF) signal has gained more interest as it may 
contain more information than the envelope echo. When 
there are a large number of scatterers per range cell it yields 
Gaussian statistics for the RF signal, but the statistics of the 
RF signal in the case of partially developed speckle don’t 
follow the Gaussian distribution. Therefore, , In this study to 
model statistical behavior of the RF data, we used K 
distribution framework as they provide a reasonable tradeoff 
between the complexity and model accuracy, described in 
[6] and for such statistics  applied them to the RF data. By 
splitting the ultrasound image to image patches, statistical 
features for image patches can be extracted using the 
statistical modeling of the RF signal. These features could 
overlap for some tissues and the pattern classification 
approaches should be utilized to classify tissues based on the 
extracted statistical features.  
Over past decades, several supervised and unsupervised 
classification and segmentation algorithms have been 
proposed to analyze the medical images. Some of these 
techniques are listed in [10-12]. Because of above 
mentioned problems (overlap between statistical features of 
tissues) and the fact that in our application (speckle 
classification), we cannot have enough training material and 
the data size (=number of image patches) is finite and small, 
we only focused on the unsupervised clustering techniques 
in this study.  
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Fig. 1.  Ultrasound beam and resolution cell.  

 
Fig. 2.  Pipeline for Speckle detection.  
 

II. METHODS 
Our proposed speckle detection scheme is shown in Figure 2 
and in this section we explain each step as following: 

A. Speckles artifact 
One of inherent characteristics of coherent imaging 

techniques including ultrasound imaging is the presence of 
speckle-type- noise. Speckle is a random and deterministic 
pattern in the image formed by the use of the coherent 
radiation of a medium containing many scatterers. Although 
the texture of the speckle pattern does not correspond to 
under-scanning structure, the local brightness of the speckle 
pattern reflects the local echogenicity of the under-scanning 
scatterers. As can be seen in figure 1, each pixel in an 
ultrasound image is formed by the back scattered echoes 
from an approximately ellipsoid called the resolution cell. If 
each resolution cell in an image patch has many scatterers, 
the corresponding patch is called fully developed speckle 
(FDS). Speckle has a negative impact on ultrasound 
imaging. It has been shown that the detectability of lesion 
reduced approximately by a factor of eight due to the 
presence of speckle in the image [13]. To track speckles as 
well as to estimate probe movement and improve 
performance of algorithms for adaptive speckle suppression 
and the elevational separation of B-scans by speckle 
decorrelation, we needed to model both fully speckle (blood 
pool) and partially developed speckle (tissue area). To this 
end, in the next subsections we investigated the ability of 
various statistical modeling of the RF signal and different 
unsupervised clustering techniques.  

B. Statistical Features for Speckle Classification 
The coherent signal to the diffuse signal energy ratio for a 

patch in an ultrasound image and the effective number of 
scatterers per resolution cell could be used as statistical 
features to identify speckles and characterize tissues. To find 
r and µ, we need to model envelope (RF) signal behavior. 
The K distribution has been developed for the envelope 
signal[3]. The interest of such distribution in ultrasonic and 
echocardiographic images relies on its ability to model both 
fully speckle (blood pool) and partially developed speckle 
(tissue area) situations. Based on K-distribution, previous 
studies [5, 14] suggested calculation of following statistics 
on arbitrary powers v of the image patch A. 
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Where Std means standard deviation, <. > =mean. Based 
on the results in [15], values of v more than one is suggested 
to perform well. 

Another statistical model is Rayleigh distribution. Given 
the assumption of fully developed speckle, the envelope RF 

image patch, R = {ri,j}, is modeled by Rayleigh statistics, 
where the probability density function (pdf) is given by:  
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Each statistical models for the RF signal has some 
advantages and some disadvantages. This suggests that we 
must consider both statistical models (Rayleigh and K 
distributions) to better characterize statistical behavior of the 
RF signal. Therefore for each image patch A, we propose to 
compute statistical features in (1) and maximum likelihood 
(ML) estimation of the patch A following the Rayleigh 
distribution (2). After extracting features for each image 
patch A, we can use the classification scheme shown in 
figure 1 to classify each image patch to FDS and non-FDS. 

C. Unsupervised Clustering for Speckle Classification 
Data clustering means partitioning data to fuzzy or crisp 

(hard) subsets. Hard clustering in a data set X means 
partitioning the data into a specified number of subsets of X 
with such a condition that an object either does or does not 
belong to a cluster. The number of subsets (clusters) is 
denoted by K. The hard partitioning is the simplest approach 
for data clustering, though its results are not always reliable 
and has numerical problems as well. However, fuzzy 
clustering allows objects to belong to multiple clusters in the 
same time, with different degrees of membership. In many 
real applications fuzzy clustering is more realistic than hard 
clustering, as objects on the boundaries between several 
classes are not forced to fully belong to one of the classes. In 
this study we used both hard (K-means and K-mediod) [16]   
and fuzzy partitioning (Fuzzy C-Means, Gustafson-Kessel 
and Gath-Geva techniques)[17, 18]  for speckle detection in 
a competitive manner.   
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Fig. 4.  Simulated ultrasound image of a fetus in 12th week (A)  and speckle detection results for five different unsupervised classifiers. Patches classified
as fully developed speckles (FDS) are shown as black. As can be seen, FCM,K-means and K-mediod performed the same. GK and GG fuzzy classifiers
were able to decrease false positives and improve accuracy of the speckle detection. Total number of patches (100x100 pixels) for the phantom image was
96. Orders for  K-distribution based features (Eq. 1) respectively was 10,1 and 0.01. 

Fig. 3.  Simulated ultrasound image of a cyst phantom (A)  and speckle detection results for five different unsupervised classifiers. Total number of
100x100 patches for the phantom image was 24. Patches classified as fully developed speckles (FDS) are shown as black. All methods except GK-fuzzy
classifier performed the same. Orders for K-distribution based features (Eq. 1) respectively was 1,1 and 0.5.  

To evaluate our proposed speckle classification scheme 
(Figure 2) We will use Dice similarity for quantitative 
metrics[19].  Where the measure is defined as: 
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where A=tissue 1,B=tissue 2, TP=true positive, FP=false 
positive and FN=false negative. 

D. Ultrasonic Images Simulation 
In order to quantitatively compare statistical features and 

classification methods, as ground truth, we used two 
different ultrasound image simulations: fetus and cyst 
phantoms generated Field II simulator [1].  

III. RESULTS 
To evaluate our proposed speckle classification scheme 

and calculate performance of each unsupervised 
classification technique, as the ground truth, we used B-
mode images (cyst phantom and fetus image) simulated by 
FieldII simulation program with 100,000 scatterers and 128 
RF lines (see Figures 3 and 4)[1]. To calculate statistical 
feature, these ultrasound images were segmented to 12x8 
image patches, where each image patch had size of 100x100 
pixels. To have a comparative analysis on the speckle 
detection performance we used the same image patch sizes 
for both simulations. K-distribution is able to model image 
patches with low scattering, however, the image patch size 
should have a reasonable size (not be not very small or very 
large). We then calculated following statistical features for 
image patch: R, Skewness and Kurtosis features for the k-
distribution and Maximum Likelihood (ML) for the 
Rayleigh distribution. After calculating statistical features 
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for each image patch, we will have 4 dimensional features 
for each image patch and we can classify them to FDS and 
non-FDS using unsupervised clustering techniques. For this 
purpose in this study we applied five pattern classification 
techniques: K-means, K-medoid, Fuzzy C-means, 
Gustafson-Kessel fuzzy classifier and Gath-Geva fuzzy 
classifier. Bottom of Figures 3 and 4 show performance of 
the classification methods for speckle detection.  

IV. CONCLUSION 
In this study we reviewed the present statistical models to 

predict behavior of the RF signal for different tissue types. 
In some ultrasonic imaging fields such as echocardiography 
Rayleigh distribution fits to reflect properties of reflections 
from blood but fails with complex structures such as 
myocardial tissue. However, another statistical model named 
K distribution have been proposed to model different kinds 
of tissue in ultrasound envelope imaging.  

To consider both statistical properties of the ultrasonic 
images we applied both Rayleigh and K-distributions and 
for each image patch A, we computed statistical features for 
K-distribution and Maximum Likelihood (ML) estimation of 
the image patch following the Rayleigh distribution. After 
extracting features for each image patch, we applied the 
unsupervised clustering techniques to classify each image 
patch to FDS and non-FDS. Based on our observation, we 
found when we use all statistical features (R-S-K- ML) 
together classifiers was able to separate classes in data space 
better than with other combinations out of R-S-K- ML  
features. Based on the results, ranking of the classification 
methods is: 1) Gustafson-Kessel fuzzy; 2) Gath-Geva fuzzy; 
3) Fuzzy c-means; 4 and 5) K-means and K-mediod.   

In the future work we will apply above mentioned 
statistical models and unsupervised classification techniques 
to detect and track speckles in real ultrasonic image 
sequences. To improve specificity and sensitivity of our 
machine-learning speckle detection scheme as well, we will 
focus on feature whitening and mapping techniques such as 
Sammon mapping [20] to increase distance between features 
before applying unsupervised classification techniques.  In 
this pilot study we only used rectangular patches with the 
uniform patch sizes. Another investigation should be done to 
test the sensitivity of our proposed speckle detection scheme 
to the image patch sizes and their shape. Using cone-shape 
image patches may improve the speckle detection 
performance.  
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