
  

  

Abstract—! Neuroplasticity induced by transcranial direct 
current stimulation (tDCS) contributes to motor learning 
although the underlying mechanisms are incompletely 
understood. Here, we investigated the effects of tDCS on resting 
brain dynamics recorded by whole-head 
magnetoencephalography (MEG) pre- and up to 35 minutes 
post-tDCS or sham over the left primary motor cortex (M1) in 
healthy adults. Owing to superior temporal and spatial 
resolution of MEG, we sought to apply a robust, blind and 
data-driven analytic approach such as independent component 
analysis (ICA) and statistical clustering to these data to 
investigate potential neuroplastic effects of tDCS during resting 
state conditions. We found decreased alpha and increased 
gamma band power that outlasted the real tDCS stimulation 
period in a fronto-parietal motor network relative to sham. 
However, this method could not find differences between 
anodal and cathodal polarities of tDCS. These results suggest 
that tDCS over M1 modulates resting brain dynamics in a 
fronto-parietal motor network (that includes the stimulated 
location), indicative of within-network enhanced localized 
cortical processing.  

I. INTRODUCTION 
Noninvasive cortical stimulation techniques such as 

transcranial direct current stimulation (tDCS) have been 
widely used to modulate cortical excitability, particularly in 
the motor cortex, to promote plasticity and augment 
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functional recovery along with functional rehabilitative 
techniques [1]. However, the mechanisms underlying 
neuroplastic changes induced by tDCS are poorly 
understood. One approach to gain insight into these 
mechanisms is the investigation of changes induced by tDCS 
on resting brain activity, which is known to show 
neuroplastic modulation after motor learning [2]. Recently, 
evidence of changes in resting brain activity immediately 
after tDCS has been shown in fMRI and EEG using 
connectivity-based model driven analysis [3], [4]. However, 
resting oscillatory dynamics post-tDCS were less 
differentiable relative to sham [4]. Thus, here we sought to 
use blind, data-driven analysis of whole-head brain activity 
as it may provide unbiased insights that advance the 
understanding of mechanisms affected by tDCS.  

In this context, a method combining independent 
component analysis (ICA) and statistical clustering is a 
rigorous, blind approach that allows separation of surface 
summed cortical activity into underlying functional network 
function associated with specific spectral signatures. 
Tracking changes in these networks in terms of their spectral 
characteristics can be very useful to describe functional 
neural processes engaged/modified by a specific 
experimental intervention. Previously, this technique as 
applied to electroencephalographic (EEG) data recorded 
during performance of a visuomotor learning task was useful 
to identify and track changes across time in functional 
oscillatory networks associated with motor learning [5]. 
Here we applied this method to whole-head MEG activity to 
identify the temporal profile of changes induced in 
oscillatory network dynamics up to 35 minutes after tDCS. 

II. METHODS 
A. Experimental procedure and Data acquisiton 

Twelve right-handed (6 females), neurologically healthy 
adults (23-40 yrs, mean age 27.2 + 5.7 yrs) participated in 
this study after providing informed consent as approved by 
the Institutional Review Board (IRB) at the National 
Institute of Neurological Disorders and Stroke. 
Neuromagnetic data were recorded at 600 Hz with a 
bandwidth of 0-150 Hz using a CTF 275 MEG system (CTF 
Systems, Inc., Canada) composed of a whole-head array of 
275 radial 1st order gradiometer/SQUID channels housed in 
a magnetically shielded room (Vacuumschmelze, Germany). 
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Synthetic 3rd gradient balancing was used to remove 
background noise on-line. Participants, blind to type of 
stimulation, participated in 3 sessions –
anodal/cathodal/sham tDCS, at least 24 hours apart, with the 
order of stimulation pseudo-randomized and balanced. 
Target region for stimulation i.e., left M1 was determined by 
transcranial magnetic stimulation targeting the optimal scalp 
position to elicit motor evoked potentials of the right 
abductor pollicis brevis. A Phoresor II Auto (model PM850, 
IOMED, Salt Lake City, UT) device was used to apply tDCS 
over M1 using a bipolar montage with the cephalic reference 
electrode over the right supraorbital area. The DC 
stimulation was delivered by 25 cm2 conducting electrodes 
covered by saline-soaked sponge, at an intensity of 1 mA 
(DC current density 0.04 mA/cm2; total charge 0.048 C/cm2) 
for 20 min in the anodal and cathodal tDCS sessions and for 
up to 20 seconds in the sham session according to a 
previously described method [6]. Rest MEG recordings were 
performed in 5 blocks of 5 minutes each (see fig. 1), 1 
before (Pre) and 4 after stimulation, allowing measurement 
of changes up to 35 minutes post-tDCS. During the 
recording, participants were instructed to stay completely 
still and relaxed with their eyes closed. Additionally, in 
order to maintain same head-MEG sensor array 
configuration, head position with respect to sensor array was 
recorded each time, and adjusted to maintain constant 
position with a tolerance of 0.5 cm. Subjects were also 
provided with a chin strap to prevent motion of the head 
during recording.   

B. Data Pre-processing 
Data from each rest block (3 min, excluding the first and 

last minute of recording) per subject were demeaned and 
band-pass filtered between 0.15-150 Hz using a 4th order, 
zero-phase, Butterworth filter and notch-filtered at 60 and 
120 Hz using a 2nd order Chebyshev-type1 filter to remove 
line noise.  

C. Independent Component Analysis and Clustering 
Each rest block of data was subjected to an extended 

Infomax independent component analysis (ICA) to 
decompose it into spatially overlapping, temporally 
independent components. All analyses were performed using 
custom written programs employing the EEGLAB 
toolbox[7] in MATLAB 7.11 (The Mathworks, Inc, 
Natwick, MA).   

Component clustering 
was performed in 3 
consecutive steps. Step 1: K-
means clustering algorithm 
was used to identify and 
partition consistent patterns 

of activation across subjects 
within each block for each 
stimulation condition. The 
algorithm was iteratively 
optimized to extract K 

mutually exclusive clusters by minimizing the sum of 
squared Euclidean distances of each object in the cluster 
from its centroid. Features used for clustering include (1) 
scalp component map (2) power in functional rhythms 
(delta:1-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, 
low gamma: 30-50 Hz, high gamma: 70-100 Hz) computed 
by integrating power spectral density (PSD) obtained using 
multitaper method, between frequency intervals (3) 
component kurtosis and (4) component entropy (281 features 
total). The use of spectral as well as topographic features in 
combination for clustering allowed identification of cortical 
networks with similar spatiotemporal characteristics. 
Clusters with artifacts were identified by visual inspection of 
cluster mean scalp map and kurtosis values and were 
excluded from further analyses. Step 2: In order to link 
changing clusters across blocks (Pre, Post-Imm, Post-10, 
Post-20, Post-30) to characterize temporal profile of effects 
of tDCS on brain dynamics, K-means centroids from step 1 
were hierarchical clustered based on Euclidean distance 
inconsistencies (thresholded at 0.9). Cophenetic correlation 
coefficients were further computed between clustering 
decision and data structure to assess the quality of 
classification suggested by clustering. Step 3: This step was 
performed to test the null hypothesis that no differences 
existed between the 3 stimulation conditions. Clusters 
identified from step 2 for each stimulation condition were 
subjected to hierarchical clustering (as in step 2), first within 
each block, and next across blocks. If differences existed 
between the 3 tDCS conditions, then networks identified 
within each stimulation condition would cluster separately at 
this step. Cophenetic correlation coefficients were computed 
similar to Step 2. Finally, spectral characteristics of 
identified clusters (representative of networks) between 
different blocks were compared directly based on 95% 
confidence intervals generated based on bootstrapped 
distributions (n=100000) of mean power in each frequency 
band. 

III. RESULTS 
The blind ICA decomposition and clustering method 

identified 3-5 functional clusters for each stimulation 
condition at all times of measurement, retaining over 90% of 
artifact-free data. Cophenetic coefficients computed for both 
steps of hierarchical clustering were greater than 0.9 
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indicating correct clustering. All 3 stimulation 
conditions were represented across 4 functional 
networks identified pre-tDCS by step 3 
clustering.  

However, this method identified an effect of 
real tDCS relative to sham in a left parieto-motor 
network characterized by a progressive decrease 
in alpha and increase in gamma band power, 
starting immediately and lasting up to the Post-20 
block after stimulation (Fig. 2). This network 
appeared only following tDCS in Post-Imm and 
also transiently engaged frontal regions in the 
Post-10 block after tDCS (Fig. 3). Using this 
approach, no differences between anodal and 
cathodal tDCS were found. No differences 
between real tDCS and sham were identifiable in 
the last block i.e., Post-30 minutes following 
stimulation. 

IV. DISCUSSION 
The temporal profile of neuroplastic changes in 

large-scale oscillatory network dynamics 
induced by tDCS is presently unknown. 
Here, we show that real tDCS over M1 
produces changes in resting cortical 
dynamics in a related parieto-motor network 
indicative of within-network enhanced local 
cortical processing. Importantly, we show 
that these network changes are persistent for 
up to 25 min post-tDCS. These findings are 
important in advancing our understanding of 
the mechanisms mediating lasting effects of 
non-invasive cortical stimulation over M1 
and its influence over a distributed fronto-
parietal motor network. 

A. General Considerations 
We demonstrate for the first time the 
feasibility of using a data-driven method 
combining ICA and statistical clustering to 
study neuroplastic changes in cortical 
network dynamics affected by tDCS, both in 
terms of   altered regional activity and 
cortical dynamics. The identified network 
here comprises neural regions that are 
functionally and structurally interconnected 
and relevant to motor control and learning. 
Surprisingly, our method failed to find 
differences between anodal and cathodal 
polarities of tDCS. Several factors could 
account for absence of polarity-specific 
effects. Since anodal and cathodal polarities 
of stimulation are directed over the same, 
relatively large cortical area (M1), cortical 
activity detected by MEG, within folds in 

Fig. 3. A) Real tDCS also caused the parieto-motor network to transiently engage 
frontal cortical regions. This network was hierarchically clustered different from the 
parieto-motor network in fig. 2 due to different topology. B) The spectral signature of 
this network is also characterized by higher power in higher frequencies, namely, beta, 
low, and high gamma. Error bars represent 95% confidence intervals.  

 

Fig. 2. Real tDCS engaged a parieto-motor network (A) immediately and (B) 20 minutes after 
stimulation respectively. (Topoplots of cluster means are shown, with activation in 
femtotesla.) (C) The spectral signature of this network showed a progressive decrease in 
alpha power and increase in low and high gamma power. Error bars represent 95% 
confidence intervals. Significant differences in power are indicated by * (p < 0.05).   
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underlying cortical gyri, may be insensitive (i.e., cancel out) 
to subtle differences in polarity-specific activation of 
underlying neural populations. Indeed, the lack of difference 
in cortical oscillatory dynamics observed here is consistent 
with evidence from magnetic resonance spectroscopy 
showing localized reduction in !-amino-butyric acid i.e., 
GABA following both anodal and cathodal tDCS [8]. 
Similarly, increases in PET (positron emission tomography) 
regional cerebral blood flow in frontal and sensorimotor 
cortical regions have not shown polarity-specific differences 
after tDCS relative to sham [9]. Alternatively, this data 
analytical approach may be insensitive to subtle differences 
in cortical network dynamics caused by anodal versus 
cathodal tDCS. Thus, work is underway to analyze these 
network dynamics in anatomical source space to disentangle 
polarity-specific effects of tDCS. 

B. Clinical Implications 
tDCS is rapidly gaining popularity as an adjunct for 
neurorehabilitation of motor and cognitive impairments [10- 
13]. Thus, clearer understanding of functional changes 
induced in specific networks engaged by tDCS could lead to 
a more principled application of this technique. If network 
changes as identified here are shown to parallel behavioral 
improvements induced by tDCS, it is conceivable that in the 
future, individual analysis of the changes in cortical 
dynamics induced by tDCS could predict the magnitude of 
behavioral effects, an issue of potential clinical relevance. 
Such neural biomarkers could contribute to effective 
rehabilitation strategies by allowing direct monitoring of 
patient response to treatment. 

V. CONCLUSION 
In summary, these results document a strong effect of 

motor cortical tDCS in enhancing local cortical processing 
in a specific fronto-parietal motor network. This finding has 
implications for the understanding of mechanisms 
underlying tDCS effects on cortical function and for 
optimizing its use to augment neuroplasticity in patients with 
brain lesions like traumatic brain injury (TBI) and stroke for 
neurorehabilitation. 
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