
 

 

Functional Connectivity in Vergence and Saccade Eye Movement Tasks 
Assessed using Granger Causality Analysis 

Yelda Alkan, Tara L. Alvarez 
Department of Biomedical Engineering 

New Jersey Institute of Technology 
Newark, NJ, USA 

Suril Gohel, Paul A. Taylor, Bharat B. Biswal  
Department of Radiology 

University of Medicine and Dentistry of New Jersey 
Newark, NJ, USA 

Abstract—Throughout the day, the human visual system acquires 
information using saccade and vergence eye movements. 
Previously, functional MRI (fMRI) experiments have shown both 
shared neural resources and spatial differentiation between these 
two systems. FMRI experiments can reveal which regions are 
activated within an experimental task but do not yield insight into 
how regions of interest (ROIs) interact with each other. This study 
investigated the number and direction of influences among ROIs 
using a Granger Causality Analysis (GCA)-- a statistical technique 
used to identify if an ROI is significantly influencing or 
‘connected’ to another ROI. Two stimulus protocols were used: 
first, a simple block design of fixation versus random eye 
movements; and second, a more cognitively demanding task using 
random versus predictable movements. Each protocol used 
saccadic movements and was then repeated using vergence 
movements. Eight subjects participated in each of the four 
experiments.  Results show that when prediction was evoked, more 
connections between ROIs were observed compared to the simple 
tracking experiment. More connections were also observed during 
the vergence prediction task compared to the saccade prediction 
task. Differences within the number of connections may be due to 
the type of oculomotor eye movements, as well as to the amount of 
higher-level executive cognitive demand.  
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I.  INTRODUCTION 
Conjugate and disconjugate eye movements acquire visual 

information. Saccadic eye movements are conjugate tandem 
ocular movements used, for example, while reading. Vergence 
eye movements are disconjugate and allow depth perception via 
inward (convergence) and outward (divergence) turning of the 
eyes [1]. 

Functional MRI measures metabolic changes and has been 
reported to be correlated to direct neural measurements [2, 3]. 
Variations in cerebral blood flow, blood volume and the 
concentration of deoxyhemoglobin are the main parameters that 
form the blood oxygenation level dependent (BOLD) signal 
acquired during fMRI studies [4, 5]. Granger Causality 
Analysis [6] is a multivariate, data driven, time-dependent 
technique which has been used to assess effective and 
directional connectivity. [7-9] This statistical approach 
corresponds to neural connectivity between selected regions of 
interest (ROIs) [10-12].  

The aim of this fMRI study was to compare saccade and 
vergence neural resources and to shed light on the dynamical 
Granger causal relationships for selected ROIs. We used a 
simple tracking task and a more cognitively demanding task to: 
1) investigate if saccade and vergence systems share similar 
activation sites; 2) compute the flow of directional influences 
for selected ROIs; and 3) compare differences between the 

number of directed influences or ‘connections’ within and 
between saccadic and vergence experimental tasks. 

II. METHODOLOGY 

A. Subjects 
Eight volunteers (5 females, 3 males, mean age 26 ± 4 years) 

participated in this investigation. All subjects signed written 
consent forms approved by the University of Medicine and 
Dentistry of New Jersey and the New Jersey Institute of 
Technology Institution Review Boards.  None of the subjects 
had neurological dysfunction. All subjects had normal 
binocular vision assessed using a Randot stereogram, near point 
of convergence and positive fusional ranges, described using 
methods in our prior study. [13] 

B. Materials and Apparatus 
A 3.0 Tesla Siemens Allegra MRI scanner with a standard 

head coil (Erlengten, Germany) was used to acquire brain 
images. Nonferrous light emitting diode (LED) targets (10 cm 
in height and 2 mm in width) were used for the visual stimuli. 
An infrared (λ = 950 nm) limbus tracking system manufactured 
by Skalar Iris (model 6500, Delft, Netherlands) with ±25° 
linear range recorded each subject’s eye movements prior to the 
imaging session.  

C. Functional Experimental Design 
The LED visual line stimulus was viewed through the use 

of a mirror. Figure 1 (plot A1) shows the appearance of 
saccadic visual stimuli in three locations: 1) 0° (target along 
midline); 2) 10° into the left visual field or 3) 10° into the right 
visual field. Vergence visual stimuli were located at 2°, 3°, 4° 
combined vergence demand (Figure 1, plot A2).  

A standard block design was used for each stimulus 
protocol. Saccade and vergence eye movements were evoked 
during alternating phases of “on” and “off” using different tasks 
shown in Figure 1, plot B. During the “on” phase, the visual 
step stimulus appeared for a random duration of time between 
0.5 to 3.0 seconds. During the “off” phase, and the subjects 
were asked to fixate on one LED target. This was a simple 
oculomotor tracking experiment where each phase was 20 
seconds. Since prediction is a more cognitive demanding task 
than the fixation versus random task, each phase for the 
prediction experiment was 40 seconds in duration. During 
random tracking, the subject was asked to look at the LED 
which was illuminated, and both the sequence and duration 
were random. During the predictable task, the subject could 
easily learn the sequence and each visual target was 
sequentially illuminated for 2 seconds. 
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Figure 1: Experimental Design and Set-up. 

D. Image Instrumentation and Procedure 
Images were acquired with a T2* weighted echoplanar 

imaging (EPI) sequence.  The imaging parameters were: FOV = 
220 mm, 64 x 64 matrix, TR = 2000 ms, TE = 27 ms and flip 
angle = 90°. A total of 32 slices were collected in an axial 
configuration where each slice was 5 mm thick. Hence, the 
resolution was 3.4 x 3.4 x 5 mm resolution.  

The functional imaging was followed by an MPRAGE 
(magnetization-prepared rapid gradient echo) scan to obtain 
high resolution anatomical images. The imaging parameters of 
the MPRAGE scan were: 80 slices, FOV = 220 mm, slice 
thickness = 2 mm, TR = 2000 msec, TE = 4.38 msec, T1 = 900 
msec, flip angle = 8º, and matrix = 256 x 256 for a spatial 
resolution of 0.9 x 0.9 x 2 mm. 

E. Data Analysis 
1)  Image Processing by AFNI 

Data were analyzed using the AFNI software suite. 
Registration and motion correction were applied to the datasets. 
A minimum least square image registration method in AFNI was 
utilized for detection and correction of any motion-induced 
changes on the 3D image space. Motion correction was followed 
by detrending of the data to eliminate linear drifts. All saccade 
and vergence trials were used because head motion artifacts 
within each plane and between planes were minimal. The largest 
average degree of rotation was 0.14 deg ± 0.13 deg and 0.17 deg 
± 0.14 deg in the pitch direction for the saccade and vergence 
datasets respectively. The largest average amount of movement 
within a plane was 0.27 ± 0.19 mm and 0.29 ± 0.27 mm in the 
inferior to superior plane for the saccade and vergence datasets 
respectively. Both are substantially less than one voxel. 

A general linear model was used to analyze the fMRI BOLD 
signal. Probabilistic independent component analysis available 
through the MELODIC software from FSL was used to calculate 
the independent signal sources. A data driven independent 
component analysis (ICA) was used to extract a reference vector 
that contained the hemodynamic response and had the greatest 
correlation (Pearson’s correlation coefficient) with the 
experimental block design. [14-16]  

The anatomical and functional data were normalized to the 
standard Talairach-Tournoux coordinate space. The combination 
of individual voxel probability threshold and the cluster size 
threshold (11 voxels rounded to a volume of 650 mm3 for our 

data set) yielded the equivalent of a whole-brain corrected for 
multiple comparison significance level of α < 0.001. The cluster 
size was determined using the AFNI AlphaSim program, [17] 
which  estimates the overall significance level by determining 
the probability of false detection through Monte Carlo 
simulation. Our simulation used 10,000 Monte Carlo iterations, 
assumed a cluster connection of the nearest neighbor, voxel 
dimension of 3.4 x 3.4 x 5 mm and sought a significance level of 
0.001. Hence, a cluster size of 650 mm3 or greater corresponded 
to p < 0.001 corrected for multiple comparisons. This 
combination of cluster size and correlation determined the 
regions of interest (ROIs) for this study. 

Individual maps of t-statistics were smoothed with a Gaussian 
kernel of 6 mm full-width, half-maximum to account for inter-
individual anatomical variation. [18-20] The functional data 
were displayed as z-scores, shown in the Figure 3 scale bar. The 
skull was removed since it is not relevant to our experiment. 

Functional activation was located both bilaterally and on 
midline.  The number of significant ROIs differed between the 
saccade and vergence datasets. For the saccadic dataset, the 
declive of the cerebellum was activated along the midline, 
whereas for the vergence dataset, the declive was activated 
bilaterally. Hence, we have chosen to analyze the cerebellum 
within the vergence dataset as two ROIs.  For the saccade 
dataset the cerebellum was defined as a single ROI. A general 
linear model (GLM) analysis resulted in 19 ROIs for the saccade 
dataset and 20 ROIs for the vergence dataset. 

2) Granger Causality Analysis  
Granger Causality Analysis (GCA) is a statistical approach 

which is used to evaluate influences or effective ‘connections’ 
between neural regions. Granger-Causality assesses the F-
statistics of the time series from fMRI data to quantify the 
existence of  possible causal relationships between the ROI 
time series in terms of ‘lags’ or ‘time separated values’.    The 
residual variance in the full autoregressive model can be 
estimated by the unrestricted equation below:  
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)(tx and )(ty are two different time series to be evaluated for 
the causality interaction; t is the current time point; )(ia  and  

)( jb  are the linear prediction coefficients for  x and y  ; u  is 
the residual error of the fit; and p is the lag length to be 
investigated. Using the F-test, the null hypothesis states that 

0)( =jb for all lags j (and therefore y does not influence or 
Granger-cause x) is tested. A similar test also can be applied to 
determine whether )(tx  causes (assessed using GCA) )(ty . 
[21] The residual variance from the above unrestricted equation 
is compared with the reduced autoregressive model, given by : 
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where  )(tx  is the time series being evaluated for influence, t is 
the current time point, )(ig is the linear prediction coefficient 
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for x; e is the residual or prediction error; and p is the lag 
length. [21, 22] The F-test comparison between these two 
models in Eqs. 1 and 2, full and reduced autoregressive, 
regarding residual variance can be calculated using Eq (3) 
below:  
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where T  is the total number of time points and p is the length 
of lag. [22]  

In our investigation, the ROIs were selected according to the 
functional activity calculated using a GLM analysis from both 
experimental tasks using vergence and saccade eye movements. 
Each ROI was masked to extract both an individual subject and 
group-level averaged time series. The extracted time series 
were used to create a Granger Causality matrix (GCM) for both 
an individual level and group-averaged level analysis. The 
GCM represents potential causal interactions between ROIs in 
terms of significance P-level values. The GCM were 
thresholded at P<0.05 with Bonferroni correction to calculate 
significant connections from all possible connections among 
ROIs. The best model order to calculate GCM was determined 
using the Bayesian Information Criterion (BIC) and Akaike 
Information Criterion for an fMRI dataset.[23] [12] 

III. RESULTS 
Typical eye movements are shown in Figure 2.  Ensemble 

saccade and vergence responses are plotted as position (deg) 
versus time (sec).  Saccadic eye movements are faster than 
vergence ones as shown in Figure 2 because the amount of time 
to acquire the target or reach steady state is less with saccade 
movements (left Figure 2) compared to vergence movements 
(right Figure 2). All subjects were able to perform the visual 
task in this study with ease. 

 
Figure 2: Ensemble saccade (left) and vergence (right) position traces (deg) as 
a function of time (sec).  

The average functional activity from eight subjects is shown 
in Figure 3 for the random versus fixation (upper plots) and the 
prediction versus random movements (lower plots) for both 
saccadic and vergence eye movements. The significance of 
each pixel involved within the experiment task is shown with a 
color bar. ROIs were chosen from the observed functional 
activity in specific regions. GCA was applied within these 
ROIs. 
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Figure 3: Average functional activity of saccadic and vergence eye 
movements. 

The group-level GCA results are shown in Figure 4. There 
are a greater number of Granger causal connections during the 
prediction versus random tracking task compared to the simple 
fixation versus random tracking task, all of which have been 
thresholded at P< 0.05 with Bonferroni corrections. Figure 5 
shows plots of the number of connections with one standard 
deviation for each group-level dataset. A repeated measures 
ANOVA shows that: there was a significant difference (p < 
0.0001 and F=92.4) between prediction compared to the 
random tracking datasets while a trend was observed between 
the saccade prediction dataset compared to the vergence 
prediction dataset (p = 0.07 and F = 4.8). However, no 
statistically significant difference was observed between the 
saccade and vergence datasets from the random tracking 
experiments.  
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Directed Influences Among Cortical Regions Via Ocular Movements 

 
Figure 4: Directed influences among ROIs for saccadic and vergence eye 
movements . 

 
Figure 5: Number of GCA influences or effective ‘connections’ versus each 
experimental task. SRT: saccade random versus fixation task; VRT: vergence 
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random versus fixation task; SPT: saccade prediction versus random task; VPT: 
vergence prediction versus random task. 

IV. DISCUSSION 
Differences in the group-level causal relationships for the 

selected ROIs using GCA within and between the saccade and 
vergence experimental tasks were observed. The differences in 
the number of influences may be due to the differences in 
cognitive demand between the tasks.  We have shown that 
predictable eye movements occur earlier and with a greater 
peak velocity compared to movements evoked using random 
target. [24] GCA has also shown interregional temporal 
variability and interactions for regions that are functionally 
connected in memory and saccadic tasks.[22] [25]   

The differences in regional connectivity or causal response 
observed within this present study may also be due in part to 
vasculature variations between different ROIs. [26] Lee and 
colleagues stated that larger vessels such as visible vessels and 
sulci require more blood which results in greater temporal delay 
when they are compared to vessels in the gray matter. Thus, 
this may lead to temporal variations in BOLD signals acquired 
from ROIs where the observed eye movement and task related 
differences results in different latency lags obtained from GCA. 
[26] Additionally, researchers hypothesized that the temporal 
variation observed within the inferior prefrontal regions and 
visual regions might be caused by the changes in hemodynamic 
response of different brain regions based on the underlying 
vasculature differences and the inability of fMRI resolution to 
capture such differences. [27] Therefore, more research is 
required to understand regional hemodynamic response and 
temporal variations in the BOLD signal between ROIs. 

VI. CONCLUSION 
The number of directed causal influences was estimated and 
compared within and between datasets using GCA. Results can 
be interpreted as eye movements that contain anticipatory 
behavior require more cognitive involvement than the simple 
random tracking experiments and / or physiological 
characteristics of the eye movements may affect 
interconnectivity within specific ROIs. While single cell 
recordings from primates and human case studies have reported 
numerous neural substrates participate in the generation of a 
saccade or vergence eye movement, the connectivity between 
these regions is still not fully understood.  Recent reviews 
emphasize the need for more research to understand the 
directionality of communication and connectivity between 
ROIs for saccade[28] and vergence [29] movements.  GCA has 
the potential to elucidate not only whether ROIs are connected 
but also the direction of information flow.  
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