
  

  

Abstract - In this paper we describe a deconvolution 

technique for estimation of the neuronal signal from an 

observed hemodynamic responses in fMRI data. Our 

approach, based on the Rauch-Tung-Striebel smoother 

for square-root cubature Kalman filter, enables us to 

accurately infer the hidden states, parameters, and the 

input of the dynamic system. Additionally, we enhance 

the cubature Kalman filter with a variational Bayesian 

approach for adaptive estimation of the measurement 

noise covariance. 

I. INTRODUCTION 

N functional magnetic resonance imaging (fMRI) the 

observed hemodynamic response is an indirect measure of 

neuronal activation, i.e. the response is represented by 

changes in blood flow and blood oxygenation that follow 

after neuronal activation. Moreover, this complex 

relationship can be both subject and brain region specific, 

which makes identification of the true effective connectivity 

(directional influence) between different brain regions 

difficult. Fortunately, the hemodynamic model describing 

this relation has been characterized [1], [2], which, under 

certain assumptions, allows an inversion of the hidden 

dynamic process to obtain an estimate of the neuronal 

activation given some observations. 

The Bayesian framework is the most commonly used 

method for the study of dynamic systems that allows 

inference on the hidden states, model parameters and the 

input. However, since the hemodynamic balloon model 

possesses strong nonlinear characteristics, we need to use a 

nonlinear estimation procedure. Taking this into account, we 

propose a deconvolution technique based on the recently 

introduced cubature Kalman filter (CKF) [3], which is the 

closest known direct approximation to the Bayesian filter 

and has been shown to outperform all other nonlinear filters 
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in a Gaussian environment. Specifically, we apply CKF  that 

is finessed by a backward pass of cubature Rauch-Tung-

Striebel (RTS) smoother to simultaneously infer hidden 

states, parameters and estimate the input (neuronal synaptic 

activity). Additionally, we enhance CKF with variational 

Bayesian approach for adaptive estimation of the 

measurement noise covariance [9]. 

II. METHODS 

A. Continuous-discrete dynamic models 

Nonlinear filtering problems are typically described by 

state-space models comprising a process and measurement 

equation. In many practical problems, the process equation 

is derived from the underlying physics of a continuous 

dynamic system, and is expressed in the form of a set of 

differential equations. Since the measurements � are 

available at discrete times �� � ���� � � 	
, we have a model 

with a continuous process equation and a discrete 

measurement equation in stochastic form: 
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where �
 represents unknown parameters of the equation of 

motion � and the measurement function �, respectively; �
 

is the exogenous input that drives the hidden states; �
����� �

 is a vector of Gaussian measurement noise; ���
 � �
 can be a function of the states and time; and �
 

denotes a Wiener process or state noise that is assumed to be 

independent of states and measurement noise. The 

continuous time formulation of the stochastic differential 

equations (SDE) can be converted into a discrete-time 

analogue using e.g. local linearization (LL) scheme [4]: 
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where �
 is a Gaussian state noise vector; �
����� �

. In 

this case, the function �� 
 is evaluated through: 
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Here "#$	  is a Jacobian of � and *� is the time interval 

between samples (up to the sampling interval). The LL-

scheme has demonstrated to improve the convergence and 

stability properties of conventional numerical integrators [4]. 

See [5] for its simple algebraic representation. 
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B. Nonlinear model identification 

Parameter estimation sometimes referred to as system 

identification can be regarded as a special case of general 

state estimation in which the parameters are absorbed into 

the state vector. Parameter estimation involves determining 

nonlinear mapping: 

�
 � /��
0 �

, (4) 

where the nonlinear map /� 
 is, in our case, the dynamic 

model �� 
 parameterized by the vector �
. The parameters �
 correspond to a stationary process with identity state 

transition matrix, driven by an “artificial” process noise 1
����� 2

. The input or cause of motion on hidden 

states �
 can be estimated as well, with input noise 3
����� 4

. This is possible because of the so-called 

natural condition of control [3], which says that the input �
 

can be generated using the state prediction �5
6
��. In the 

case, the “input” to the nonlinear mapping function /� 
, i.e. 

our hidden states �
, cannot be observed, one can apply a 

joint filtering approach [6].. Here the unknown system states 

and parameters are concatenated into a single higher-

dimensional joint state vector, 7 � 8�
 � �
 � �
9: and 

simultaneously estimated from the observed signal �
 . Then 

the state-space model has the form: 
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For simplicity, we will further denote the first bracket on the 

right side of the process equation by =��
��� �
��� �
��
. 

C. Cubature Kalman Filter 

The cubature Kalman filter [3] is a recursive, nonlinear 

filtering algorithm. It computes the first two order moments 

(i.e. mean and covariance) of all conditional densities using 

a highly efficient numerical integration method (cubature 

rules). Specifically, it utilizes the third-degree spherical-

radial rule to approximate the integrals of the form 

(nonlinear function × Gaussian density) numerically using a 

set of > equally weighted symmetric cubature points ?@A � BACAD�E : 

F ��7
��70 �� -G
�7 ! ∑ BA��@A
EAD�IJ , (6) 

@ � K>� 8-G � ,-G9	� BA � �> � L � ���� � � > � �M	  (7) 

where @A, is the i-th column of cubature points matrix @ with 

weights BA and M is dimension of the state vector (M � M# �MN � MO). 

In order to evaluate the dynamic state-space model 

described by (3), the CKF includes two steps: a) a time 

update, after which the predicted density P��
6��Q
��
 ����5
6
��� R
6
��
 is computed; and b) a measurement 

update, after which the posterior density P��
6��Q

 ����5
6
 � R
6

 is computed. Additionally, to improve 
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ALGORITHM I.  

SQUARE-ROOT CUBATURE KALMAN FILTER WITH ESTIMATION OF 

MEASUREMENT NOISE COVARIANCE  

• Initialization:  

7̂T � U87T9 � 8�T� �T� �T9:;  VT � > , MW; �X � YZ-G[ \T � ]^_`)YR#a � YRNa � YROa+  

• Time update:   
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• Measurement update: Set 7̂
6
���T
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6
��, i
6
���T
 �
i
6
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6
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6
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6
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6
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Iterate the following steps (o � �� � � p):  
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If  (o � p) set m
6
 � m
6
�{

, 7̂
6
 � 7̂
6
�{


, \
6
 � \
6
�{

, and 

update 2
 according to (31).   

numerical stability of the filter, the square-root version of 

CKF (SCKF) is considered, where the square-root factors of 

the predictive and posterior error covariance matrices \ are 

propagated (R � \\:). For detail derivation of CKF see [3]. 

 
1 Parameter Z | ����9 defines assumed dynamics of the noise covariance 

(Z � � corresponds to stationary covariance). 
2 Parameter e | ����9 annealing rate and in our case e � � 9995. 
3 Term qr(.) represents QR decomposition of matrix i: into an orthogonal 

matrix Q and upper triangular matrix R such that i: � ��, and ii: ��:�:�� � �:� � \\:, where the resulting square-root (lower triangular) 

matrix is \ � �:. 
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D. Adaptive estimation of noise covariance 

In [9] a robust variational Bayesian (VB) approach for 

approximation of joint filtering distribution of the states and 

measurement covariance matrix was introduced, where the 

matrix �
 is modeled through the inverse Wishart (IW) 

distribution; U8�
9 � �V
 , l , �
��m
. Specifically, this 

involves dynamic models (14-15) for parameters V
 and m
  

during the time update of CKF and their iterative update 

during the measurement update step (18-29). For a full and 

detail derivation of this VB approach see [9]. 

Besides measurement covariance matrix, we also 

approximate the noise covariance matrix 2
 of model 

parameters by using a Robbins-Monro stochastic 

approximation scheme for estimating the innovations [6]:  

2
 � �� , }
2
��� }v~
)�
 , �5
6
��+)�
 , �5
6
��+:v~
: � (31) 

where �~� is the partition of Kalman gain matrix 

corresponding to the parameter variables, and � | ����9 is 

scaling parameter usually chosen to be a small number (e.g. � ���). Moreover, we constrain 2
 to be diagonal matrix, 

which implies an independence assumption on the 

parameters. Finally, we inject process noise artificially by 

annealing the square-root covariance of process noise (11).  

The complete CKF algorithm with VB measurement noise 

covariance estimation is shown in Algorithm I.  

E. Rauch-Tung-Striebel smoother 

The following procedure is a backward pass of cubature 

RTS smoother, which can be used for computing suitable 

corrections to the forward filtering results to obtain the 

smoothing solution P��
 � ���:
 � �)�5
6:6�5
6:� � R
6:� + [7]. 

Because the smoothing and filtering estimates of the last 

time step 	 are the same, we make 7̂:6:� � 7̂:6: , \:6:� � \:6:. 

This means the recursion can be used for computing the 

smoothing estimates of all time steps by starting from the 

last step � � 	 and proceeding backwards to initial time step � � �. The algorithm is summarized in Algorithm II.  

Finally, in order to obtain optimal estimates of all 

parameters, states and input, we iterate over forward and 

backward run until the increase of the log-likelihood (32), 

calculated for each iteration, is less than a tolerance value 

(e.g. 0.001).  
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(32) 

where &� and �����6���are the innovations �&� � �� , �5�) and 

innovation covariance matrix ������6��� � �����6��������6���� 
, 

respectively. 

 

ALGORITHM II  

SQUARE-ROOT CUBATURE RAUCH-TUNG-STRIEBEL SMOOTHER 

• Initialization: 7̂
6
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6
 � \
6: 
 

• Time update:  bA�
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III. SIMULATIONS 

To demonstrate the performance of proposed 

deconvolution procedure, simulated fMRI data are used. We 

generate the simulated data by using hemodynamic model, 

which can be briefly described as: Neuronal activity � 

causes an increase in a vasodilatory signal � that is subject to 

auto-regulatory feedback. Blood flow " responds in 

proportion to this signal and causes change in blood volume 3 and deoxyhemoglobin content, �. The observed signal is 

nonlinear function of volume and deoxyhemoglobin. These 

dynamics are modeled by a set of differential equations (43) 

and an observation equation (44): 

��
 � )�� , ��
 , ��"
 , �
+����"
 � �
����3
 �  )"
 , ¡�3

+�����
 �  �"U�"

 , ¡�3

�
x3

���
 (43) 

�
 � 4T8l��� , �

 � lk�� , �
 3
⁄ 
 , l¢�� , �

9. (44) 

Outflow is related to volume ¡�3
 � 3� £⁄  through Grubb’s 

exponent }. The relative oxygen extraction U�"
 � ¤¥�� ,
�� , ¦
� §⁄ 
 is a function of flow, where ¦ is a resting 

oxygen extraction fraction. 

Our state vector is �̈
 � 8�
 � �
 � �
9: , where �
 �8�
 � "
 � 3
 � �
9 and �
 � ?�� �� ��  � }� ¦C. The rest of the 

model parameters are constants. Here we consider two 

different simulation scenarios:  

Simulation 1.: We generated a fMRI time course using the 

above hemodynamic model, where the input (neuronal 

activation) had a form of Gaussian function � �&'(	�¤©�� , ��
k
. We considered minor noise fluctuations 

for the input and hemodynamic states with variance � ª ���¢ 
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and measurement noise with variance equals �. The 

integration step was equal to the sampling interval («� ��	¬
. The model inversion was then initialized with �T �8�������9; �T	within their physiological ranges (but different 

from values used for simulations); 3T � �; and error 

covariance matrices ?RT�#
 � -G­ ª ���k� RT�N
 � � ª
���k� RT�O
 � - ª ���®C. All the noise components 

(covariances), except the input noise variance that we 

considered fixed 4 � � �, were adaptively approximated 

during SCKF step. Finally, we used integration step «� � � �	¬⁄ . In Fig. 1 we can see that the only forward 

estimation pass is not able to recover the true input signal, 

neither the hemodynamic states. However, the backward 

smoothing procedure already provides correct estimates. 

 
Fig. 1. Model inversion results for forward pass of SCKF and 

backward pass of SCKS, including estimates for hemodynamic states, 

input, parameters, and predicted hemodynamic response. 

 
Fig. 2. Results of Monte Carlo simulations for the accuracy of neuronal 

input estimates (top) and estimates of measurement noise variance 

under different level of SNR. 

Simulation 2: Next we performed Monte Carlo 

simulations for different amount of additive measurement 

noise with signal to noise ratio (SNR) from 1 to 14, where 

for each noise level we repeated generation and model 

inversion 50 times. The rest of fMRI time course generation 

and initialization was the same as in the Sim. 1. Finally, we 

compared performance of SCKS regarding an accuracy of 

the neuronal input estimate for scenarios when the 

measurement noise variance was assumed to be known and 

for the case it was adaptively estimated through VB 

approach (see Fig. 2). The inaccuracy between estimated and 

true neuronal input is expressed via root mean square error 

(RMSE). 

IV. CONCLUSION 

In this paper, we have introduced a robust blind 

deconvolution technique based on the nonlinear square-root 

cubature Kalman filter and Rauch-Tung-Striebel smoother, 

which allows an inference on hidden states, input, and model 

parameters. Critically, the measurement noise variance is 

adaptively estimated as well, through the efficient 

variational Bayesian approach. Proposed method is very 

general and can be applied to the inversion of any nonlinear 

continuous dynamic model that is formulated with stochastic 

differential equations. This description of the technique has 

focused on the estimation of neuronal synaptic activation by 

generalized deconvolution from observed fMRI data.  

Finally it is evident that one can generalize this approach 

to dynamic causal modeling [10] and hope in improved 

identification of effective connectivity, with a possible 

application also to resting-state fMRI data. 
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