
  

  

Abstract— The complexity associated with musculoskeletal 
modeling, simulation, and neural control of the human spine is 
a challenging problem in the field of biomechanics. This paper 
presents a novel method for simulation of a 3D trunk model 
under control of 48 muscle actuators. Central pattern 
generators (CPG) and artificial neural network (ANN) are used 
simultaneously to generate muscles activation patterns. The 
parameters of the ANN are updated based on a novel learning 
method used to address the kinetic redundancy due to presence 
of 48 muscles driving the trunk. We demonstrated the 
feasibility of the proposed method with numerical simulation of 
experiments involving rhythmic motion between upright 
standing and 55 degrees of flexion. The tracking performance 
of the model is accurate to within 2° while reciprocal muscle 
activation patterns were similar to the observed experimental 
coordination patterns in normal subjects. The suggested 
method can be used to map high-level control strategies to low-
level control signals in complex biomechanical and biorobotic 
systems. This will also provide insight about underlying neural 
control mechanisms.   

I. INTRODUCTION 
ow back pain is a widespread disorder in industrialized 
countries. Based on epidemiological reports, 80% of the 

population faces this activity limitation at least once in their 
lifetime [1] which places tremendous human and economic 
costs to individuals and societies. Handling heavy loads, 
with fast trunk motions (i.e. movements with extreme trunk 
angular position, velocity and acceleration), repetitive 
movements, and awkward postures are some of the risk 
factors related to low back injuries. Hence, better 
understanding of the neuro-musculo-skeletal system 
performance would help us to recognize various 
abnormalities in spine behavior and assist us in a way to 
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design the workplace to reduce the risk of injuries. For this 
purpose, we can use biomechanical models to investigate the 
consequences of various movement strategies for estimation 
of muscle forces and joint reaction forces affecting the spine 
[2].  

The complexity of spinal models is partly due to 
kinematic and kinetic redundancies in the multi-link spinal 
system driven by multiple-muscles. In the literature, various 
optimization methods are often used to solve the kinematic 
and kinetic redundancies [3-5]. However, the difficulty with 
optimal control methods is the selection of an appropriate 
cost function used for solving the optimization problem. 
Different cost functions will produce significantly different 
results [6]. Recently, Nasseroleslami et al. [7] used a neuro-
fuzzy network, and a special reward function which depends 
on the muscle moment arm to update its weights. In this 
approach, they could solve the kinetic redundancy problem 
while the error between actual and desired trajectories drives 
the neuro-fuzzy system. A yet unanswered question is the 
relative role of the feedback system and the optimization 
process which determines the muscle recruitment and human 
movement planning. Full-state feedback is not only 
unrealistic from neurophysiological viewpoint, but may also 
cause instability in presence of short and long delays. 
Therefore, a combination of feed-forward and feedback 
control using an internal model of the system may be closer 
to reality [4].  

To answer these questions, we remark that there are 
evidences that the central pattern generators (CPGs) in 
spinal cord can produce rhythmic motion in vertebrate 
animals. In robotics literatures, the CPG is sometimes used 
to produce the desired trajectories for motion planning [2], 
[8-11].  In other applications, the CPG has been used to 
generate the control commands in functional electrical 
stimulation (FES) systems. In particular, Stites and Abbas 
[12] employed pattern generators and pattern shapers to 
drive a swinging leg. However, they did not use position or 
velocity feedback errors in the pattern generator system. 
Zhang [6] also used CPGs and neural networks in an FES 
application. In simulated experiments, he achieved normal 
walking patterns, but he did not deal with muscle 
redundancy.  

The primary aim in this paper is to simulate the spine as a 
3D pendulum driven by 48 muscle actuators during flexion 
and extension tasks in the sagittal plane. For this aim, we use 
CPG as it used in FES studies to activate muscles. 
Furthermore, based on reference [6], we will use artificial 
neural network (ANN) between muscle’s model and CPG. 
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This ANN plays the role of spinal interneurons. We also use 
a novel learning method to train the ANN for solving the 
kinetic redundancy problem. In next sections we will 
describe the details of the model, present the simulation 
results of oscillatory maneuvers and briefly discuss the 
results.  

II. METHODS 

A. Trunk model 
A 3D inverted pendulum is considered to model the trunk.  

The model is constrained at L5-S1 with a ball and socket 
joint and controlled with 48 muscles actuators [13]. The 
dynamic equation of the trunk is as follows: 

)(11 θGNWWWJWJ input −+−=   (1) 

where 1J ,WW ,W , inputN ,θ  and )(θG  are inertia matrix, 

skew symmetric matrix corresponding to W , angular 
velocity in the body coordinate system, net muscular torque 
around L5-S1, angular position vector and the moment 
vector from gravity, respectively [13]. 

B. Muscle model 
We use the popular Hill-type muscle model, as described 

by:  
))()().(.(max lflflfaff pvl +=   (2) 

 where a  is the muscle activation, l is muscle length, l is 
contraction velocity, lf  is force-length relationship, vf is 

force-velocity relationship, pf is muscle passive force 

function, and maxf is the maximum muscle force which can 
be calculated by multiplying Physiological Cross Section 
Area (PCSA) with maximum muscle stress.          

C.  CPG model 
Experimental observations have shown that there are 

neural circuits in the spinal cord known as central pattern 
generators (CPGs) [8]. CPGs can generate motor primitives 
from high level commands that lead to a high dimensional 
muscle recruitment pattern. When a CPG is utilized as part 
of an FES control, it provides phase, frequency, and 
amplitude which are necessary for generating a desired 
motion [6]. 

In the literature, we can find various mathematical models 
of the CPG [14-16]. Among them, Matsouka’s model [16] is 
widely used [6], [17], [18]. For our purpose Matsouka’s 
model is adopted due to its simple structure to facilitate 
implementation. The model consists of two neurons: one 
drives the flexor and the other drives the extensor; these 
neurons have a self and mutual inhibitory interaction. 
Mathematically, the model can be written as follows: 
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In the above equations, 1x , 1v , 2x , and 2v are the internal 

states of the oscillators and outy  is the CPG output. 1τ and 

2τ are the time constants, c is tonic input, L is feedback 

gain, e is sensory feedback, and finally h  and β represent 
the mutual and self inhibitory parameters, respectively. To 
have a rhythmic oscillation, the ratio between 1τ and 2τ
must be in the range of 0.1-0.5 [19]. If we choose L  large 
enough, it will guarantee that the oscillator frequency will 
entrain with sensory feedback [6]. We should pre-set the 
CPG frequency according to the motion frequency. 
Moreover, its frequency can be calculated using the 
following equation [20]: 
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Based on reference [10], one oscillator is used per degree 
of freedom. In our work, since the desired motion is in the 
sagittal plane, we designed an oscillator for the flexion 
angle. For the other two DOFs, we set zeros as the CPG 
output.  

D. Artificial neural networks 
There are complicated circuitries and interneurononal 

connections between the CPG and motoneurons [6] that can 
be simulated by ANN’s [6]. A radial basis function (RBF) 
neural network is proposed for this purpose [6], with a 
different learning method inspired form Nasseroleslami’s 
formulation [7] to deal with redundancy problem. 

  To accomplish our aim, for each muscle we consider an 
RBF neural network. As a result, we have 48 sub networks 
in total. CPG output is fed to each sub network, and we 
calculate the outputs according to the following equation: 
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 iα represents the muscle activation, ijφ is the membership 

function of the hidden neurons, ijw is the weight of 

membership functions, yout  is the CPG output, ijc is the 

center of the Gaussian functions, ijσ represent  the 

variances, i  is the muscle index, and j  represents the 
number of hidden neurons in the second layer. 

Now ANN must be trained to achieve a satisfactory 
control. So we consider the following cost function: 
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where e is the error between desired and actual trajectory, 
e is the rate of error, α is the muscle activation, and finally 

ek , and αk  are selected  to normalize the values. 
Selection of the center values is the vital first step in RBF 

neural networks. The Gaussian function’s center and 
variance, as well as their weights will be updated. Updating 
the parameters are done as follows: 
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On the other hand, because J is a function of muscles 
moment arm, it can be used to resolve the redundancy in 
musculoskeletal system, based on muscles configuration. J
can be calculated as follows [9]:  
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where ikd is the moment arm of the thi muscle around the 
thk direction, and iPCSA is the muscle physiological cross 

sectional  area. 

E. Computational algorithm 
Muscle length can be calculated based on its insertion and 

origin, while its insertion changes instantaneously according 
to angular position. Muscle velocity is computed by 
derivative of the muscle length with respect to time. 
Consequently, muscle moment arm can be described by the 
following equation: 
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Control algorithm, as depicted in Fig. 1, consists of two 

parts: feed-forward and feed-back paths. 
Feed-forward path: CPG produces basic information like 

amplitude, phase, and motion frequency. Its output feeds 
ANN. Then, muscle dynamics is driven with ANN’s output. 
Finally, muscles output act as actuators to control the trunk 
motion. 

Feed-back path: in this stage, error between desired and 
actual trajectories is fed to CPG to adjust its frequency based 

on the error frequency. In fact, CPG entrains with error 
which is the main CPG’s characteristic. In addition, 
combination of the error feedback and muscle’s activation 
are used in the cost function.  In this strategy, we can obtain 
the updating rule for Gaussian function parameters. 

III. RESULTS AND DISCUSSION 
We have simulated an oscillatory movement between 0 to 

55° with a frequency of 2 Hz. The activations of flexor and 
extensor muscles are shown in Fig. 2c. As we can see in this 
figure, the amplitude of extensor muscle activations is much 
larger than the flexor muscle activations because we have 
modeled gravity in our simulation. Furthermore, the flexor 
and extensor activations are in phase while they are anti 
phase with each other; indeed, when the flexor muscles are 
active, the extensor muscle must be inactive, and vice versa. 
Fig. 2a illustrates a very good tracking performance of the 
system. The maximum error between the simulated and 
desired angular position is 0.035 rad (see Fig. 2b). 
Therefore, our system has accomplished a satisfactory 
performance which can be further optimized by adjusting the 
free parameters. 

 
Fig. 1. Schematic diagram of the control algorithm. 

 
 

Fig. 2. (a) Desired and actual position and velocity profiles, (b) muscles 
activation profile: R-RA and R-LT are abbreviations for right Rectus 
Abdominus and right Longissimus Thoracis, respectively, (c) moment 
profile around joint, (d) and profile for flexion and extension motion in 
sagittal plane. 
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The oscillator limit cycle has been depicted in Fig. 3. It 

shows that the CPG has a stable limit cycle. Furthermore, it 
means motor primitives and the stability of the patterns 
contribute to tracking performance of the controller while 
kinetic redundancy has been resolved as well. 

Previous methods, which consider CPG in their models 
[6], [12], [17] must separate the flexor and extensor muscles 
from each other. The CPG model sends the signal to each of 
them separately. However, in our model, the CPG sends a 
signal for all muscles. Furthermore, we do not need to 
separate the flexors and extensors from each others because 
our learning method can predict the relative activities of the 
muscles. In addition, the system keeps the flexor muscles in 
phase with each other and out of phase with the extensor 
muscles. It is possible to include the stability constraints to 
promote co-activation to satisfy the required joint impedance 
in light of possible perturbation in the system. Since learning 
methods are dependent on muscle moment arms and their 
cross sectional area, muscles activation levels were different 
among agonist muscle groups and it is confirmed with the 
observed normal behavior of the muscles [3].  

Although we have provided the preliminary results of a 
mathematical model that entails setting of a large number of 
parameters, we see promising similarity in comparison to 
experimental findings in the literatures [21-22]. We have 
designed additional experiments that tests the muscle 
recruitment patterns and movement profiles for point to 
point and repetitive trunk planar and complex movements 
with different cycle time, range of motion and directions. 
The similarity of predictions under similar boundary 
conditions gives additional confidence about feasibility of 
the complex mathematical model.  

Some of the limitations of our model emerge from the 
simplifications. We have ignored some DOFs of the trunk 
model and further assumed that the whole system acts as an 
inverted pendulum. Passive tissues were not considered in 
the model and the joint was considered as ball and socket 
while in real systems, the translational degrees of freedom 
should be considered as well. These limitations shall be 
eliminated in future to yield a more realistic model. 
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Fig. 3. Limit cycle of oscillator in phase space. 
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