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Abstract— Robotic assessment of sensorimotor impairment
began in the mid 1990s as a means to address some of
the issues regarding inter-rater reliability and the lack of
precision associated with traditional measures of sensorimotor
impairment. Robotic measures of postural control, reaction
time, movement smoothness, and movement error associated
with robotic assessment of the upper-limb fail to recognize the
inherent spatial and geometric differences between stroke and
control hand path trajectories. In this study we propose the
application of a class of algorithms, Dynamic Time Warping,
designed to quantify the spatial difference and skew between
hand written characters and vocal waveforms as a means
for identifying individuals exhibiting sensorimotor impairment.
In order to achieve this 85 stroke subjects, and 54 age,
gender, and handedness matched control subjects, underwent
robotic assessment of the upper-limb. Subjects were identified as
either stroke or control using a K Nearest Neighbour classifier
with a Dynamic Time Warping distance metric. Classification
accuracy, sensitivity, and specificity in excess of %80 percent
was achieved.

I. INTRODUCTION

A cerebrovascular accident (CVA), or stroke, is a localized
disturbance of blood flow to the tissues of the brain resulting
from thrombosis, embolism, or hemorrhage and concluding
in sudden cell death and tissue damage. Patient outcomes
vary based on both the size and location of the lesion.
These may include, but are not limited to, patient death or
chronic conditions of varying severity such as aphasia and
sensorimotor impairment in either the upper or lower limbs
[1][2].

In order to address these impairments, stroke patients
may receive multiple interventions from an occupational or
physiotherapist targeted towards the areas which are believed
to be affected. The decision to continue the application of
said interventions and the overall success of the rehabilitative
protocol is determined through observation of continued
response on a set of traditional assessment metrics. Met-
rics such as the Functional Independence Measure [3], the
Chedoke-McMaster Scale of Stroke Recovery [4], and the
Fugl-Meyer Motor Assessment Scale [5] currently represent
the gold standard of assessment of either function or im-
pairment within the clinic. Patients are scored upon their
perceived capacity to complete a set of predetermined tasks
pertaining to their ability to perform daily tasks of living or
to move, or resist movement of, the limb under examination.
The results gained by manner of a qualitative survey are
subsequently recorded on an ordinal scale. As a consequence
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of definition, the potential for inter-rater bias is introduced
by the qualitative nature of the measurement. Conversely, in
order to avoid such potential inter-rate bias the groupings of
the ordinal scale may be made wide enough to encompass
rater variability at the cost of reduced precision [6].

In order to address these potential failings, robotic plat-
forms capable of capturing high frequency kinematic data
regarding hand speed, acceleration, and position in a quan-
titative manner have been developed for the purpose of
assessment of sensorimotor impairment. Though multiple
platforms with subtle differences in construction and feature
definitions exist, a common set of kinematic measures per-
taining to the subject’s postural control, reaction time, move-
ment smoothness, and movement error have been derived [7].
Though such metrics have been successfully demonstrated to
delineate between subject groups [7], they neglect to quantify
the inherent spatial and geometric differences in hand path
trajectories between stroke and control subjects illustrated in
Figure 1.

Dynamic Time Warping (DTW) may function as measure
of similarity suitable for comparing the spatial and geometric
properties of two hand path trajectories. DTW is a distance
metric which equates the similarity between two signals as a
function of the degree to which the time axis of each signal
must be skewed in order to construct an alignment such that
the naive pairwise euclidean distance between the signals
is minimal [8]. Though originally developed to measure the
similarity between two waveforms in a speech recognition
task, the algorithm has also successfully been applied to hand
writing and gesture recognition [9]. Additionally, DTW has
been shown to outperform other similar similarity measures
such as Earth Mover’s Distance, Frechet Disance, and Haus-
dorff Distance when applied to classifying time series data
in the classical cylinder-bell-funnel problem [10].

Consequently, given the inherent spatial differences be-
tween control and stroke subject hand trajectories and the
demonstrated ability of DTW to cluster and classify based
upon the spatial difference in signal pairs, it is our belief
that DTW is capable of distinguishing between stroke and
control hand trajectories with high sensitivity and specificity
as part of a K Nearest Neighbours classification protocol.

II. METHODOLOGY

A. Subjects

A population consisting of 85 stroke subjects from St.
Mary’s of the Lake Hospital in Kingston. Ontario, Canada
and from Foothills Medical Centre in Calgary, Alberta,
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Fig. 1. A) Hand trajectories of a control subject, male age 55, from
the central target to the 45 degree peripheral target. B) Hand trajectories
of a stroke subject of identical gender and age exhibiting sensorimotor
impairment in the right hand.

Canada were selected for robotic assessment of the upper-
limbs. In order to qualify, all stroke subjects had to possess
the ability to understand verbal commands, suffered only a
singular cerebrovascular accident, had to have no additional
history of neurological disorder, and had to have no his-
tory of musculoskeletal disorders which could impair their
performance on the upper-limb assessment task. A similar
age, gender, and handedness matched control population
consisting of 54 healthy individuals with no known history
of neurological disorder was selected from the surrounding
areas.

Robotic assessment of stroke subjects was conducted
between 14 and 45 days post-CVA. For some members of the
population, additional robotic assessments were performed
between 60 and 120, and 170 and 270 days post-CVA
providing a total of 124 assessment points for the 85 stroke
subjects. Prior to robotic assessment the upper-arm and hand
portions of the Chedoke-McMaster stroke assessment scale
were administered by a physiotherapist.

B. Task

Robotic assessment was conducted by recording sub-
ject performance on a centre-out reaching task within the
horizontal plane using the Kinesiological Instrument for

Normal and Altered Reaching Movement (KINARM), a
bimanual exoskeleton robot and augmented reality display
system manufactured by BKIN Technologies [11]. Subjects
undergoing assessment were placed in the device such that
their arms were both supported within the horizontal plane
by the robotic exoskeleton and occluded from view by the
horizontal virtual reality display. The centre target was placed
such that it was located in the centre of the subject’s natural
workspace at 90◦ elbow flexion and 30◦ shoulder flexion.
Eight peripheral objective targets were placed relative to the
location of the centre target at 45◦ increments at a distance
of 10cm.

Subjects were instructed that upon presentation of a pe-
ripheral target on the horizontal display, they were to move
their hand from the centre target to the peripheral target
indicated and stabilize. Subjects were allotted three seconds
to complete the task, in which a randomized waiting period at
the centre target between 1250ms and 1750ms was included.
Eight trials to each of the 8 targets were conducted in random
order for a total of 64 trials per hand. The task was replicated
for both hands for a total of 128 trials per session.

C. Data

Four kinematic metrics pertaining to postural control,
reaction time, movement smoothness, and movement error
were derived from the recorded hand position, velocity,
and acceleration data [7]. A subject’s postural control was
defined as their average hand speed during the random
length postural window preceding the onset of the centre-out
reaching task. Similarly, reaction time time was defined as
the amount of elapsed time in milliseconds between presen-
tation of the desired peripheral target and movement onset.
In order to quantify the smoothness of the movement, the
number of local hand speed maxima was determined. Finally,
movement error was quantified as the amount of direction
error resulting from the first sub-movement. The first sub-
movement was defined as the period of time bounded by
movement onset and the time at which the first local hand
speed maxima occurred. Subsequently, the direction error
inherent to the first sub-movement was calculated to be the
angular difference between a vector spanning from the hand’s
position at movement onset and first sub-movement end time,
and a vector spanning from the centre to the peripheral target.
Only hand position data recorded during the period of time
between presentation of the peripheral target and the time at
which the subject’s hand first entered the peripheral target
was utilized to calculate the DTW distance between hand
trajectories.

D. Dynamic Time Warping

Let A and B represent a pair of hand trajectories such
that A = (a1, a2, ..., an) and B = (b1, b2, ..., bm) where
each point ai or bj represents the X and Y coordinate
position of the hand within the global coordinate frame of
KINARM at time i or j. Similarly, let D(ai, bj) =| ai− bj |
represent a distance function equivalent to the euclidean
distance between trajectory A at time i and trajectory B
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at time j. In order to isolate a subset of values âi form
A and b̂j from B such the cumulative distance between
matched points âi and b̂j is minimal, a warping function
W (i, j) can be introduced. Let W (i, j) define a warping
function such that W (i, j) = 1 for pairs (ai, bj) which are
located on the warping path and produce a minimal sum of
distances D(ai, bj) and let W (i, j) = 0 otherwise. Therefore,
the DTW distance between two hand trajectories can be
calculated by deriving the warping function W (i, j) such
that Equation 1 is minimal [8][9].

DTW (A,B) =

(∑n
i

∑m
j W (i, j)D(ai, bj)∑n
i

∑m
j W (i, j)

)
(1)

The warping function which provided an optimal solution
for W in Equation 1 was found via the dynamic program
outlined in Equation 2. Let C(i, j) represent a cost matrix in
which each element is equivalent to the total cost of creating
a warping function which contains D(ai, bj). Each point
in C(i, j) can be reached by either pairing the preceding
points C(i− 1, j − 1), removing a time step from trajectory
A C(i − 1, j), or by removing a time step from trajectory
B C(i, j − 1). Through observation of the principle of
optimality, one notes in order to build an optimal warping
function of length k+1 an optimal warping function of length
k can be extended. In order to derive W , C was evaluated
iteratively for all values such that 0 > i < n and 0 > j < m,
resulting in the warping function being extended to include
the pair (an, bm).

C(i, j) = D(Ai, Bj) +min

C(i− 1, j − 1)
C(i, j − 1)
C(i− 1, j)

 (2)

E. Classification

K Nearest Neighbours (KNN), a classifier in which class
inference is achieved by identifying the closest K data points
in the feature space to a probe datapoint and then assigning
the probe the class which comprises the majority of the
closest neighbours, was selected to differentiate between
stroke and control hand trajectories [12]. The use of KNN
lent itself to the classification of hand trajectory data for two
reasons, the first of which was the use of an explicit distance
metric. Typically the distance between two feature vectors in
a KNN classifier is determined by calculating the euclidean
distance. In order to calculate the distance between two
hand trajectories the euclidean distance was replaced with
the DTW distance. In order to compare traditional robotic
assessment features, a euclidean distance metric was used as
part of the KNN classification protocol.

The second aspect of the KNN classifier which lent itself
towards the classification of hand trajectory data was the
training process. A KNN classifier is unique in that it is
a supervised learning system which does not rely on a
training process, and consequently does not rely upon class
prototypes in order to base its classifications. Instead, the
KNN classifier compares the current probe vector to the

TABLE I
CONFUSION MATRICES: DTW KNN CLASSIFIER

Predicted

Actual
Affected Unaffected

S C S C
S 108 16 S 110 14
C 6 48 C 23 33

TABLE II
CONFUSION MATRICES: TRADITIONAL KNN CLASSIFIER

Predicted

Actual
Affected Unaffected

S C S C
S 110 14 S 120 4
C 22 27 C 30 24

entirety of the feature space. Consequently, the use of a
KNN classifier allowed for the use of stroke and control hand
trajectories as recorded without the need to create stroke and
control prototype hand trajectories; a process which would
have been required for the use of a probabilistic artificial
neural network.

The K value of the KNN classifier implemented was de-
termined through experimentation. A K value of 5 was found
to give results with both high sensitivity and specificity.

III. RESULTS

Given the limited amount of data, classification was con-
ducted using a leave one out verification strategy. Hand
trajectory data from affected and non-affected arms was
classified against control data separately. Control data sets
for the affected and unaffected arm classification tasks were
selected such that proportion of left and right hand dominant
subjects remained identical between the stroke and control
populations. Traditional robotic measures of impairment
were classified in an identical matter.

A pair of confusion matrices describing the classification
of the affected and non-affected arms of stroke subjects and a
population of control subjects using a DTW similarity metric
are presented in Table I. Similarly, Table II contains a pair
of confusion matrices for the same subject classes using a
euclidean distance metric to calculate the similarity between
a 4 element vector describing the traditional robotic features
postural control, reaction time, movement smoothness, and
movement error. Table III illustrates additional classification
performance parameters including percent accuracy, sensitiv-
ity, and specificity.

A binomial test of classifier performance indicated that
the probability that the DTW KNN classifier outperformed
the traditional classifier on affected hand trajectories by
random chance was 0.11. Similarly, the probability that the
Traditional KNN classifier outperformed the DTW KNN
classifier on unaffected hand trajectories by random chance
was found to be 5.2e-10. As illustrated in Table III, the DTW
KNN classifier was also found to exhibit greater specificity
for affected hand trajectories.
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TABLE III
SPECIFICITY AND SENSITIVITY: DTW AND TRADITIONAL CLASSIFIERS

DTW Traditional
Affected Unaffected Affected Unaffected

% Accuracy 0.88 0.79 0.79 0.81
Specificity 0.89 0.59 0.55 0.44
Sensitivity 0.87 0.89 0.89 0.96

IV. DISCUSSION

Though the DTW KNN classifier did not statistically
outperform the KNN classifier based on traditional robotic
assessment metrics, it did demonstrate an ability to produce
statistically comparable results. This is particularly note-
worthy when the amount of information available to each
classifier is considered. The KNN built upon traditional
robotic assessment measures had information pertaining to
postural control, reaction time, movement smoothness, and
movement error to base classification decisions. In contrast,
the DTW KNN classifier had access to only one measure
of similarity to base its classifications upon. If given access
to additional sources of geometrical and spatial similarity,
performance of the DTW KNN classifier may substantially
improve.

However, despite a similar overall performance to the
traditional KNN classifier, Table III illustrates the DTW
KNN classifiers increased specificity when classifying the
affected arms of stroke subjects. Specificity, is a term directly
related to the true negative and false positive rates inherent
to the classifier. This suggests that the DTW KNN classifier
has a lower probability of identifying an affected stroke
hand trajectory as a control hand trajectory by a margin of
%30 when compared to similar analysis by the DTW KNN
classifier on unaffected hand trajectories and the traditional
KNN classifier on both affected and unaffected hand trajec-
tories. Such a property may suggest that strong spatial and
geometric differences exist between hand trajectories in the
affected arms of stroke subjects and the hand trajectories of
control subjects and the unaffected arms of stroke subjects.
The KNN classifier based upon traditional robotic assessment
metrics does not posses this spatial information, and in turn
may explain why the false positive rate is high in proportion
to the true negative rate for both affected and unaffected hand
trajectories.

Furthermore, resulting from its high specificity rate, a
DTW metric of sensorimotor impairment in stroke subjects
may find applications outside of the clinic and inside an
emergency room environment. The diagnosis of a CVA
immediately after onset is difficult given that the resulting
lesions do not typically appear on Computer Aided Topog-
raphy or Magnetic Resonance Imaging scans until a period
of 24 to 48 hours after the accident [1][2]. Given the DTW
KNN classifiers low false positive and high true negative
rates, such a system may be able to separate individuals who
have suffered a stroke from those who have been suspected
of suffering a stroke with a high degree of accuracy.

V. CONCLUSION

A significant number of robotic assessment platforms
designed to quantitatively record kinematic data for the
purposes of measuring sensorimotor impairment record limb
position data in addition to traditional measures of robotic
assessment such as postural control, reaction time, movement
smoothness, and movement error throughout the course their
evaluation. Dynamic Time Warping as a similarity metric
as part of a K Nearest Neighbours classification protocol
effectively demonstrates that this limb position data can pro-
vide classification results that are comparable to traditional
robotic assessment metrics and in some instances outper-
form traditional robotic assessment metrics on measures of
specificity. However, further research is needed to model
how spatial and geometric similarity as measured by DTW
changes in sub-acute, acute, and chronic stroke subjects
in comparison to traditional robotic assessment metrics.
Ultimately, the performance of the implemented DTW KNN
classifier demonstrates that this is an area of sensorimotor
impairment assessment measures that should not continued
to be ignored.

REFERENCES

[1] J. Adams, HP, B. Bendixen, L. Kappelle, J. Biller, B. Love, D. Gordon,
and d. Marsh, EE, “Classification of subtype of acute ischemic stroke.
Definitions for use in a multicenter clinical trial. TOAST. Trial of Org
10172 in Acute Stroke Treatment,” Stroke, vol. 24, no. 1, pp. 35–41,
1993.

[2] R. P. Donahue, R. D. Abbott, D. M. Reed, and K. Yano, “Alcohol and
Hemorrhagic Stroke: The Honolulu Heart Program,” JAMA, vol. 255,
no. 17, pp. 2311–2314, 1986.

[3] K. Ottenbacher, Y. Hsu, C. Granger, and R. Fiedler, “The reliability
of the functional independence measure: a quantitative review,” Arch
Phys Med Rehabil, vol. 77, no. 12, pp. 1226–1232, 1996.

[4] C. Gowland, P. Stratford, M. Ward, J. Moreland, W. Torresin,
S. Van Hullenaar, J. Sanford, S. Barreca, B. Vanspall, and N. Plews,
“Measuring physical impairment and disability with the chedoke-
mcmaster stroke assessment,” Stroke, vol. 24, no. 1, pp. 58–63, 1993.

[5] D. J. Gladstone, C. J. Danells, and S. E. Black, “The fugl-meyer
assessment of motor recovery after stroke: A critical review of its
measurement properties,” Neurorehabil Neural Repair, vol. 16, no. 3,
pp. 232–240, Sep 2002.

[6] P. S. Lum, D. J. Reinkensmeyer, R. Mahoney, W. Z. Rymer, and C. G.
Burgar, “Robotic devices for movement therapy after stroke: current
status and challenges to clinical acceptance,” Top Stroke Rehabil,
vol. 8, no. 4, pp. 40–53, Oct 2003.

[7] A. M. Coderre, A. A. Zeid, S. P. Dukelow, M. J. Demmer, K. D.
Moore, M. J. Demers, H. Bretzke, T. M. Herter, J. I. Glasgow, K. E.
Norman, S. D. Bagg, and S. H. Scott, “Assessment of upper-limb
sensorimotor function of subacute stroke patients using visually guided
reaching,” Neurorehabil Neural Repair, vol. 24, no. 6, pp. 528–41, Jan
2010.

[8] P. Somervuo and T. Kohonen, “Self-organizing maps and learning
vector quantization for feature sequences,” Neural Processing Letters,
vol. 10, no. 2, pp. 151–159, 1999.

[9] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 26, no. 1, pp. 43 – 49, 1978.

[10] P. Sung, Z. Syed, and J. Guttag, “Quantifying morphology changes in
time series data with skew,” Proceedings of the 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing-Volume
00, pp. 477–480, 2009.

[11] S. H. Scott, “Apparatus for measuring and perturbing shoulder and
elbow joint positions and torques during reaching,” Journal of Neuro-
science Methods, vol. 89, no. 2, pp. 119 – 127, 1999.

[12] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Infor-
mation Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21 – 27, jan
1967.

8238


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

