
  

 
Abstract—This paper proposes a framework for tracking 

both human hand kinematics and object contour during 

grasping task. The framework is based on modeling the object 

as point cloud and the use of marker-based tracking. We 

introduce how to estimate contact sites on both the hand and 

object, hand enclosing space, and graspable features from 

recorded data. Two experiments were performed to 1) verify the 

accuracy of contact site estimation (less than 5 mm), and 2) 

validate the feature extraction. Our approach can provide 

significant insight into how humans plan grasping and 

manipulation based on object recognition. 

I. INTRODUCTION 

HERE has been extensive effort on tracking finger joint 

kinematics during human grasp behaviors to quantify the 

features of the high dimensional space of human hand [1, 2, 

3]. Many studies have shown that grasping movements can be 

represented in a low dimensional space. However, there are 

other important features that characterize human grasping, in 

particular how humans select graspable features of objects. 

Surprisingly, systematic analyses of this issue have been 

largely overlooked in the neuroscience literature. The concept 

of grasping affordance has been studied for many years, 

which is defined as the quality of an object that allows a 

person to grasp and perform an action [4]. However, this 

concept has not been systematically modeled and analyzed, 

thus preventing further understanding of how object 

properties are represented and how grasping is planned in the 

central nervous system. These gaps stem from lack of 

systematic measurements and quantification of (a) where the 

object is grasped and (b) what parts of the hand make contact 

with the object. This is probably because traditional 

kinematic recording techniques used for human grasp studies 

make it difficult and tedious to track contact areas on the 

object and hand.  

In the field of robotics, recent studies have attempted to 

quantify the mapping between cues derived from perception 

of object features and the interaction between robotic hands 

and objects. The robots can use data generated from human as 

a training set to generalize the knowledge of how and where 

to grasp. This can be attained through two main methods: one 

is to track position and orientation of the human hand as a 
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demonstration for the robots [5, 6, 7], but the geometry of the 

object is not considered; the other is to label graspable 

features heuristically, such as grasping points [8] and 

graspable part [9] but the hand posture is generated 

computationally. It has been shown that a better 

understanding of human hand-object interaction and object 

recognition would help generate more robust and human-like 

grasps for robots [10]. It is then important to utilize a tracking 

framework that can help to build the complex mapping 

between object geometry, grasp affordance, and hand 

configuration. 

The present work describes a framework that could bridge 

these gaps. Specifically, the key objective is to track the 

contour of the object and the hand at the same time. This is 

achieved by using our previously developed Kalman Filter 

for whole-hand tracking [11], combined with modeling the 

objects as real time point cloud. Point cloud has been one of 

the major approaches for object representation in robotics, 

therefore our approach can benefit from several well 

developed algorithms. Most importantly, this framework 

would extend our knowledge of human grasping 

quantitatively to the domain of human object recognition and 

grasp planning.   

II. METHOD 

A. Hand tracking 

There are three main options for tracking whole-hand 

kinematics and they all have their advantages and drawbacks. 

While allowing the most natural movements, computer vision 

based tracking is the least accurate and is sensitive to 

environmental factors. Data gloves are easy to setup, but they 

are not very accurate if one wishes to reconstruct the spatial 

distribution of the digits. This is because they use joint angle 

sensors, and therefore errors that accumulate across many 

sensors lead to large errors in position estimation.  We chose 

to use marker-based tracking because of its ability to provide 

the most accurate estimation of the positions of the tips and 

joints, both of which are essential for estimation of 

hand-object contacts. Specifically, we used a whole-hand 

tracking scheme based on Extended Kalman Filter that takes 

advantage of recursive estimation to reduce the effect of noise 

and marker occlusions. It consists of 24 markers and is 

capable of estimating 29 degrees of freedom (DoF) of the 

entire forearm, wrist, and hand sampled at a frequency of 200 

Hz. The mean accuracy, measured in tip-to-tip tests, is 3 mm 

(see [11] for details).  
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B. Object modeling and tracking 

The most important aspect of our kinematic tracking 

framework is to synchronize tracking of object geometry and 

the hand. We model the target object as point cloud Pi(t) 

which represents the outer surface of the object (Fig. 1). 

There are multiple ways to obtain Pi in real time, for example, 

using depth sensors. For demonstration purpose, however, 

here we obtained point cloud pi in an object frame of 

reference for each object prior to the experiment by manually 

creating CAD model of the objects. During the experiments, 

markers were attached to the objects to give a real time 

estimation of the 6 DoF pose of the object. The pose can be 

represented as a time dependent rotation matrix R(t) and a 

translation vector P(t) that transform the object center point 

cloud pi into a global frame of reference. 

Pi(t) = R(t) pi + P(t)  (1) 

Note that this synthetic point cloud will be replaced with 

real time data from depth sensors for more intensive data 

collection to reduce the effort of manual construction of 

object models. 

C. Contact site detection 

With both hand and object being tracked, it is possible to 

estimate the points of contact when the hand is grasping the 

object by modeling it as a collision detection problem 

between the contour of the hand and the contour of the object. 

The phalanges can be modeled as cylinders and the joints can 

be modeled as spheres. It is also possible to generate a mesh 

that wraps around all joints and phalanges as the surface of 

the hand. In the present work, for simplicity, we only model 

the hand as a collection of 20 spheres that are located at the 

joint center as well as centers of the finger tips, Jk , with radius 

rk equal to half of the measured joint thickness (Fig. 1).  

To estimate contact points, we calculate the distance 

between Pi and Jk : 

Dik = || Pi – Jk ||         (2) 

For each joint, if there’s Pi satisfies  

Dik < rk + h   (3) 

this joint is defined to be not in contact with the object, where 

h is a threshold that compensates for noise and tracking error. 

For each joint that is contacting the object, there would be a 

collection of points Qj ϵ {Pi} satisfying equation 3. We define 

the point of contact of joint k as Ck ϵ {Qj} which minimize the 

distance Djk = || Qj – Jk ||. This equation essentially 

determines the point from the object point cloud that is the 

closest to each joint center that is in contact.  Note that this 

simple collision detection algorithm can be replaced by more 

efficient algorithms if a real time application is necessary. 

D. Hand enclosing space and graspable features 

We define hand enclosing space as the space enclosed by 

the parts of hand that are used to grasp the object. The 

quantification of hand enclosing space is important because it 

can distinguish among grasp postures that might have similar 

hand kinematics but different contact areas, thus providing 

additional information about hand-object interactions. For 

instance, a side pinch (holding a key) is very similar to 

wrapping around a thin stick (holding a fork). However, the 

former grasp utilizes the side pad of the index finger for 

contact, whereas the latter utilizes all fingers for stability. 

Therefore, these two grasps are characterized by very 

different enclosing spaces. Most importantly, hand enclosing 

space could be further used to determine what parts of the 

object are enclosed by the hand. 

The hand enclosing space is essentially a bounding region 

that is usually modeled by an ellipsoid or a polygon. After 

testing minimum bounding boxes, ellipsoids, and spheres, we 

eventually selected to use a convex hull that bounds all joint 

spheres that are in contact with the object (Fig.1). Each joint 

sphere is approximated by 64 vertices. Convex hull is more 

compact than other bounding geometries and the volume it 

encloses best fits the space occupied by the parts of hand that 

are in contact.  

Once the object is grasped, the geometry that is enclosed by 

the hand can be defined as a graspable feature, or affordance. 

This is quantified by testing whether a point from Pi is inside 

the convex hull. Therefore the graspable feature that is 

associated with a grasp movement is a subset of the object 

point cloud (Fig. 1) and can be used for similarity testing 

between different objects and grasp configurations. 

E. Experimental setup 

In the implementation of our tracking framework, we used 

a motion tracking system with active markers (Marker 

diameter ~1mm, position accuracy <1mm; PhaseSpace Inc., 

San Leandro, CA, U.S.). The marker positions were sampled 

at 120 Hz and automatically labeled by the system. The joint 

thickness was measured using a digital caliper for initial 

calibration [11]. The EKF tracking scheme and contact 

detection was implemented in MATLAB as post processing.  

Three subjects participated in the experiment and each of 

them performed 2 tasks. The first task was designed to 

determine the accuracy of digit contact detection, in which 

subjects were instructed to reach, grasp, and lift an inverted 

T-shaped object. This object is equipped with two 

 
 

Figure 1. Grasping a bottle. Both the model of the hand and point cloud 

of the bottle are shown. The contacting joints are denoted by red 

spheres, the convex hull generated for hand enclosing space is shown 

in grey, and the green dots are graspable features.  
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force/torque sensors (ATI Nano-25, ATI Industrial 

Automation, Apex, NC, U.S.) each mounted under long 

panels (Fig. 2a). This setup allows measurement of the net 

center of pressure applied by the finger in contact with the 

panel with an accuracy of ~ 1mm [12]. Subjects were asked to 

grasp only on the panels connected to the force sensors using 

thumb and one of the fingers (Fig. 2b). The net center of 

pressure was calculated in two ways: one was based on 

force/torque measurement and the other was based on the 

contact point detection algorithm we proposed (Section C). 

Each subject performed five trials. 

In the second task, subjects were instructed to grasp and lift 

three objects (bottle, mug, milk jug; Fig. 2c) five times. Note 

that, as done in our previous studies of grasp planning [12], 

subjects were not given instructions on where to grasp the 

objects, and therefore they could plan and choose contacts 

based on individual preferences, object geometry and 

properties, e.g., mass, mass distribution, and frictional 

properties. This second task was designed to further validate 

the detection of contact sites as well as the hand enclosing 

space and graspable feature in a natural setup by using object 

with different geometric features. All four objects used in 

both tasks had a pre-defined point cloud and were tracked 

with the PhaseSpace system to generate a synthetic real time 

point cloud synchronized with the hand tracking. 

III. EXPERIMENTAL RESULTS 

A. Spatial accuracy of contact detection 

The contact sites detected by our algorithm could be more 

than the tips of the pair of fingers involved in the task of 

grasping inverted-T object. For instance, two distal joints of 

both thumb and index were in contact with the object in Fig. 

2b. In order to compare the contact detection algorithm with 

the data measured by force sensors, we computed the mean of 

all contact points associated with each digit. The error was 

quantified as the distance between kinematic estimation of 

the contact point and the force estimation of the center of 

pressure. The result of mean error is shown in Table 1. The 

maximum mean error was less than 5 mm. 

B. Tracking hand-object interaction 

The detection of contact sites, enclosing spaces and 

graspable features were captured at object lift onset by 

evaluating the velocity of the object. The overall results 

appeared to be reasonable, although there were cases of 

missing joint contacts due to marker occlusion (Fig. 3). An 

interesting observation is that, even though subjects were 

instructed to grasp each object as they wished, the five 

graspable features generated by different subjects were highly 

consistent. Specifically, the bottle was often grasped from top 

or from the side using a precision or power grasp, 

respectively; the cup was often grasped at the handle, over the 

top, on the side, or on the rim; the jug was often grasped at the 

handle, cap, or sides (Fig. 3 shows one representative 

subject). These results further demonstrate that geometric 

cues, together with familiarity with the object’s intended use 

and properties, can significantly constrain the way humans 

grasp objects. 

IV. CONCLUSION AND FUTURE WORK 

The proposed framework is capable of capturing the 

complete kinematic description of grasping including the 

hand and the objects, as well as their interactions. Although 

we only tested 3 objects, our preliminary results are 

promising. Specifically, we found that our algorithm can 

reconstruct, with reasonable accuracy, the distribution of 

unconstrained contacts on widely different objects (task 1). 

Furthermore, our approach allows us to describe not only the 

hand postures that subjects use to grasp different objects, but 

also where the objects are grasped. The estimated contact 

sites can be used to quantify the grasp quality of human 

grasps using robotics-based indexes [13, 14], such as 

stability.  

A major limitation of our tracking framework is its 

sensitivity to missing markers, a problem that is particularly 

severe for objects that require wrapping of the digits around 

specific object features, e.g., handles. This issue would 

further limit application of our framework to experiments 

performed on non-human primates because they have smaller 

hands than humans [15, 16]. A possible improvement is to use 

a hybrid dataglove and marker tracking scheme to minimize 

the effect of marker occlusion for specific grasp 

TABLE I 

ERRORS OF CONTACT SITE ESTIMATION (MM) 

Finger in 

contact 
Subject 1 Subject 2 Subject 3 

Thumb/Index 3.9/4.5 2.3/3.2 4.1/4.3 

Thumb/Middle 2.1/3.7 3.5/4.2 4.2/2.6 

Thumb/Ring 3.6/4.4 3.3/4.1 3.4/2.3 

Thumb/Little 3.2/4.9 4.4/3.8 5.0/4.8 

 

 

 
Figure 2. Objects used in tasks. (a) Front view of the inverted T-shaped 

object embedded with force sensors, (b) representative data from one 

trial in which subject used his thumb and index finger to grasp and lift 

the object. The red spheres denote joints that are in contact with the 

object whereas blue dots are estimated contact point on the two force 

panels. The objects used for the experiments are shown in (c). 
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configuration. We are now working on optimizing our 

algorithms and generating a more automated data collection 

procedure.  

We are aiming to collect large set of data using this 

approach allowing quantification of the sensory-to-motor 

interactions responsible for object representation and grasp 

planning. We believe that this work will also be a valuable 

tool as training data for robotic hands to generate 

‘human-like’ grasps. 
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Fig. 3.  Snapshots of one subject performing five different grasps on each of the three objects. 

8250


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

