
  

 

Abstract—The performance of reaching movements to visual 
targets requires complex kinematic mechanisms such as 
redundant, multijointed, anthropomorphic actuators and thus 
is a difficult problem since the relationship between sensory 
and motor coordinates is highly nonlinear. In this article, we 
present a neural model able to learn the inverse kinematics of a 
simulated anthropomorphic robot finger (ShadowHand™ 
finger) having four degrees of freedom while performing 3D 
reaching movements. The results revealed that this neural 
model was able to control accurately and robustly the finger 
when performing single 3D reaching movements as well as 
more complex patterns of motion while generating kinematics 
comparable to those observed in human. The long term goal of 
this research is to design a bio-mimetic controller providing 
adaptive, robust and flexible control of dexterous 
robotic/prosthetics hands. 

I. INTRODUCTION 

HE human hand includes multiple joints allowing for an 
infinite number of different trajectories to move the 

fingers from one spatial position to another, which is critical 
in many daily tasks [1]. Such finger flexibility results in a 
complex neural control scheme that needs to select, plan and 
execute a particular trajectory in order to take into account 
task demands (e.g., accuracy) or changing environmental 
conditions (e.g., external perturbation) [1].  

Consequently, when considering the multiple degrees of 
freedom (DOFs) involved in the control of dexterous robotic 
hands and fingers, both neuroscientists and roboticists 
focused on adaptive robot controllers [2],[3]. 

One fundamental problem for the brain as well as for any 
robotic controller aiming to command complex kinematic 
mechanisms, is to learn internal models of forward and 
inverse sensorimotor transformations (e.g., inverse 
kinematic) for reaching and grasping. This is a complex 
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problem since the mapping between sensory and motor 
spaces is generally highly nonlinear and depends on the 
constraints imposed by the physical features of the human or 
robotic hand/finger as well as by the environment. In order 
to solve the inverse kinematic problem, various neural 
models were proposed; but many of these models did not 
integrate specific neurophysiological substrate resulting in a 
very limited biological plausibility (e.g., [4]). Conversely, 
other computational works proposed biologically plausible 
neural network models including specific brain 
structures/functions such as the Cerebellum [5]-[7] or the 
population vector coding processes found in motor/premotor 
areas [8]-[11]. 

 Here, in accordance with the latter approach, we present 
a cortical network model that was able to learn the inverse 
kinematic. This neural architecture learned the internal 
inverse kinematic model of a simulated anthropomorphic 
robot finger (ShadowHand™ finger) having four geometrical 
DOFs. During an exploration (a motor babbling) phase, 
random motor commands endogenously generated were 
used to activate the finger while the corresponding sensorial 
consequences (e.g., visual) allowed training of the neural 
model to learn the inverse kinematic of the actuator. The 
results revealed that, after learning, this neural model was 
able to control the anthropomorphic finger in order to 
perform accurate and robust 3D reaching movements (with 
various levels of complexity) towards spatial targets with 
kinematics comparable to those previously observed in 
human. The long term goal of this research is to design a 
large scale modular cortical neural network model allowing 
adaptive, robust and flexible control of dexterous 
robotic/prosthetics hands. 

II. MODELING APPROACH 

A. Cortical Modeling and Sensorimotor Information  

The proposed neural network model expanded the 
previous DIRECT (DIrection-to-Rotation Effector Control 
Transform) model of redundant reaching [8],[9] that 
functionally reproduces the population vector coding 
processes evidenced in the motor and premotor cortices 
[12]. This neural architecture learned neural representations 
encoding the inverse kinematic to accurately control an 
anthropomorphic robot finger with four DOFs.   

Adaptive performance relied on the integration and 
processing of five main types of sensorimotor information 
involved in the control of visually guided movements: i) the 
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neural drive conveying information about motor command 
for actual performance; ii) the proprioceptive information 
providing the current state of the finger (e.g., angular 
position) resulting from the sensory consequences of the 
motor commands; iii) the visual information related to the 
finger and the localization of the targets in the 3D space; iv) 
the task and goal related information involved in motor 
planning; v) the motor error computed (e.g., by the 
cerebellum; [5]-[7]). The combination of this sensorimotor 
information was employed to tune the neural model 
parameters throughout learning to perform accurate finger 
movements. Specifically, this architecture learned the 
internal representations of the inverse kinematic to establish 
the mapping between spatial displacements of the finger and 
the motor commands that generate the angular 
displacements at each joints by integrating visual, 
proprioceptive and motor command signals of the moving 
finger. This neural model also included a ‘context field’ (for 
more details see [13]) which is a set of neurons receiving 
inputs that determine the context of a motor action. A 
context field (here, implemented with radial basis functions) 
changes its activity when a particular joint configuration is 
recognized as inputs.  

B. Cortical Network Architecture  

The relationship between spatial and joint velocities of the 
finger is given by the following (discrete-time) equation: 

 

    Jx              (1) 
 

where Δx, Δθ and J are the spatial velocity, the joint velocity 
of the finger and the finger’s Jacobian matrix, respectively. 
To obtain a joint rotation vector that moves the finger at a 
desired spatial velocity, (1) can be rewritten as follow: 
 

  xG                   (2) 
 

where G(θ) =J -1(θ) is an inverse of the Jacobian matrix. For 
a redundant manipulator such as the one used here, a unique 
inverse does not exist.  

The elements of the matrix G(θ) are denoted by gij(θ) 
where index i refers to the actuator space dimension and 
index j refers to the 3D workspace. The output of the 
network gij(θ) is given by: 
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where gij(θ) are the basis functions of the network and k is 
the index of the basis function, the vector cijkm is a measure 
of the distance between the input value θ and the center of 
the kth basis function, and Aijk is the activation of the basis 
function (decreases in a Gaussian manner from the center). 
Here, μijkm and σijkm are the center and the standard deviation 
along the dimension m of the kth Gaussian activation 
function, respectively. Each basis function is associated to a 

scalar weight wijk, related to the magnitude of the data ‘under 
its receptive field’. The set of weights zijkm allow for locally 
and linearly approximating the slope of the data ‘under its 
receptive field’. 

The learning phase consisted of a babbling process that 
was performed by successive action-perception cycles 
during which the motor commands were generated to 
perform finger movements with various orientations to reach 
targets located in the 3D workspace (Fig. 1A).  

 

 
Fig.1. Neural model to learn and perform finger movements. (A) During the 
learning phase, the Endogenous Random Generator (ERG) generated 
random angular displacements (ΔθR) that were transformed into spatial 
displacements (Δx) of the finger. Such spatial displacements allow the 

neural model to compute an estimation of angular displacements ( ̂ ) and 
compare them to those randomly generated. (B) After learning, the 
performance of the neural model was assessed by performing reaching to 
multiple spatial targets in the 3D workspace. A movement-gating GO signal 
was employed ([8]) to trigger the generation of the voluntary reaching 
movement.  

 

Namely, during each action–perception cycle, random 
finger joint displacements (ΔθR; R denotes random 
movements) were generated. These random joint rotations 
were performed from current joint configurations (denoted 
by θ) that were provided as inputs to the neural architecture 
and to the direct kinematics of the finger resulting in spatial 
displacements (Δx) of the finger. Then, based on these 
spatial displacements, the neural network computed an 
estimation ( ̂ ) that was compared to the corresponding 
random joint movement providing thus, an error signal that 
guided the adaptation of the network parameters (e.g., wijk, 
zijkm in equation (3); for further details on the model 
implementation, see [9],[10],[14]). After learning, a spatial 
target was provided to the neural model that performed the 
corresponding movement to reach it (Fig. 1B). 

C. Geometrical Modeling of the Actuator  

The model of the finger incorporated the geometrical 
features of the robotic ShadowHand™ finger (Shadow Robot 
Company Ltd.) which has the properties to mimic the main 
biomechanical features of an actual human finger including 
four DOFs (two for the metacarpophaleangeal (MCP; 
flexion-extension and abduction-adduction), one for the 
proximal interphalangeal (PIP; flexion-extension) and one 
for the distal interphalangeal (DIP; flexion-extension)). The 
direct model of the finger geometry was obtained by 
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employing the Denavit–Hartenberg parameterization (for 
further details see [14], [15]). 

III. RESULTS 

During and after learning of the inverse kinematic of the 
finger, the performance of the neural model was assessed by 
performing center-out reaching movements towards multiple 
targets placed in the 3D Cartesian workspace. These targets 
were located in three different planes (see Fig. 2A): i) the 
back plane (n=5) where flexion/extension and adduction 
movements were combined; ii) in the middle plane (n=8) 
where only flexion/extension movements were performed 
and iii) and the front plane (n=5) where flexion/extension 
and abduction movements were combined. 

 

 
 
 

 
Fig.2. Performance of the neural model during three different learning 
phases. (A) Trajectories during center-out (the stick diagram of the finger 
represents the initial position) reaching movements performed after learning 
towards 18 targets placed in the rear (blue color, n=5), middle (black color, 
n=8) and front (red color, n=5) plane. (B)-(E). Average reaching error and 
standard deviation during the early, middle and late learning phase for the 
targets placed in the three planes. For the panel (B), each point represented 
the average error values for the targets placed in the three planes across a 
block of 1000 trials. n: number of targets for each plane. 

 
The reaching error and its variability (mean and standard 

deviation obtained when considering all targets and the three 
planes) decreased progressively throughout the learning for 
all the targets (Fig. 2B-E). Namely, when considering all 
targets, the average pointing errors were equal to 4.17 ± 2.34 
mm, 0.40 ± 0.47 mm and 0.40 ± 0.39 mm for the early, 
middle and late learning periods, respectively. Although the 
overall error was small, the highest error values were 
obtained for movement performed in the front plane (Fig. 
2C-2E). These results also revealed that, after learning, the 
angular and linear displacements were sigmoid-shaped and 
the velocity profiles were generally single-peaked and bell-
shaped. The trajectories were slightly curved and the targets 
were accurately reached. Also, the robustness of the cortical 
network model was assessed by performing a movement 
where the finger had to reach a target located in a singular 
region of the workspace involving a completely outstretched 
configuration of the effector. This was done by employing 
both the neural model and a classic Moore-Penrose inverse. 

 
 

 

Fig.3. Typical angular (first row) and linear (second row) kinematics of the 
fingertip obtained after learning for a reaching movement towards the target 
in the rear plane (purple circle in Fig.2A). The first, second and third 
columns represent the position, velocity and acceleration, respectively. 
 

The results revealed that higher velocity variations were 
found with the classic Moore-Penrose inverse while the 
neural model appeared to behave correctly around this 
singular region (Fig. 4A).  

 

 
Fig.4. (A) Behavior of the neural model (thick line) and the classic Penrose-
Moore inverse (thin line) in a singular region (finger outstretched). (B) 
Performance of a more complex finger movement (“triangular loop”, from 1 
to 3) combining three sub-movements (flexion, abduction/extension, and 
adduction/extension).  
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Finally, to illustrate the potential capabilities of this neural 
model to generate more complex finger motion, a “triangular 
loop” was performed by combining successively flexion, 
abduction-extension and adduction-extension movements 
bringing the finger in regions where highest reaching errors 
were found (i.e., front plane, Fig. 2C-D).  

IV. DISCUSSION 

We presented a neural architecture functionally similar to 
the motor and premotor cortices that was able to learn the 
inverse kinematic computation of an anthropomorphic finger 
including four DOFs. Specifically, this neural model 
reproduced the main kinematics features observed in human 
during finger movements and grip production [1],[16]. 
Namely, after learning, the angular and linear displacements 
were sigmoid-shaped and the velocity profiles were 
generally single-peaked and bell-shaped although for some 
targets a secondary (small) peak was observed which was 
also consistent with human data [1]. These specificities need 
to be further investigated. In addition, in agreement with the 
experimental results from the literature, this neural model 
generated slightly curved trajectories and the targets tested 
were accurately reached [1],[16]. The findings also 
suggested that this neural model was able to control the 
finger properly when moving it near singular region. 
However, when the learned mapping was replaced by the 
Moore-Penrose pseudoinverse, excessive joint rates were 
generated as the finger passes near the same singular region 
(Fig. 4A) resulting in jerky movements not observed in 
human finger motion [1],[16]. This is due to the fact that this 
type of neural model learns a mapping that remains zero 
along singular directions because there is little spatial 
movement in nearly singular directions [9],[13]. Although 
the neural model performance was mainly assessed on 
relatively simple reaching, more complex/ecological 
motions such as a “triangular loop” could also be correctly 
executed (Fig. 4B).  

Taken together, the present findings suggest that this 
model can reproduce accurate, flexible and robust ecological 
human finger reaching movements. This is important since 
these features contribute to the unique manual ability that is 
so critical for most of the activity of daily living [1]. This 
work can be extended to consider several fingers by 
combining multiple neural models based on the same 
principles albeit inducing a higher computational cost. 
However, as previously mentioned, the performance of this 
neural model was mainly assessed by considering relatively 
simple center-out reaching movements. Therefore, further 
assessments need to be performed to extend these results. 
Namely, additional investigations will further examine the 
potential of this neural architecture to control this 
anthropomorphic finger under various conditions (e.g., 
robustness to multiple types of perturbations) as well as 
when considering more complex and ecological movements. 
Also, as a next step, this neural model will be employed to 
learn the inverse kinematic of an actual anthropomorphic 

robot finger (ShadowHand™ finger) having the same 
geometrical features. On the long term, future work will 
focus on the dynamics of the fingers since this neural model 
controls a biomechanical system without including any 
dynamic components (e.g., gravity, inertia). This could be 
performed by modeling more explicitly structures such as 
the Cerebellum that has been considered to encode this type 
of information [5],[6]. In summary, the aim of this research 
is to design a bio-mimetic controller providing adaptive, 
robust and flexible control of dexterous robotic/prosthetics 
hands. 
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