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Abstract— In this paper, we present a neuromuscular elbow
model with both motor unit pool recruitment and Hill-based
contraction dynamics. The model builds upon various models
reported in the literature and provides a way to quantify force
and movement variability in both isometric and non-isometric
contractions. The model’s accuracy in estimating muscle force
variability at low force levels (at less than 20% maximum volun-
tary contraction) is evaluated in isometric contraction case and
compared with experimental results from the literature. This
comparison suggests that the model is accurate in estimating
force variability within the low force range and can be used to
explore effects of muscle force variability in increased kinematic
variability during slow movements.

Index Terms— Movement variability, muscle force variabil-
ity, movement intermittency, muscle models, motor-unit pool
models.

I. INTRODUCTION

Although speed-accuracy trade-offs and planning and ex-
ecution of rapid goal-directed movements have garnered
significant research interest, far fewer studies have reported
results on the lower end of the movement speed spectrum.
Not only do very interesting observations exist that are
unique to slow movements, but an explanation of these
observations is highly relevant to motor function recovery
and motor skill learning, where movements are typically
slow at the initiation of therapy or learning, and move-
ment speed increases through practice, exercise or therapy.
Specifically, in their study on movement intermittency in
slow movements, Doeringer and Hogan [1] showed that
voluntary movements become considerably intermittent (or
non-smooth) with decreasing movement speed.

Hamilton et al. [2] demonstrated that larger muscles pro-
duce less variable forces, due to increased total number of
motor units. Hamilton et al. also stated that it is likely that
a similar relationship is in effect for the number of active
motor units during a contraction, within the same muscle,
and that this mechanism is responsible for the increased
coefficient of variation1 (CV) for low force levels, a well-
documented observation in several studies in the literature
[2]–[4]. This observation provided motivation to explore
whether the increase in muscle force generation variability
for small forces due to low number of active motor units can
explain the increased variability in slow movements.
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1Coefficient of variation corresponds to standard deviation divided by the
mean.

In this paper, we present a neuromuscular elbow model to
be used in evaluating force and movement variability in slow
movements. Specifically, this work is part of a modeling-
based approach to answer the question “can increased muscle
force variability in low force levels explain increased vari-
ability or intermittency of slow movements?” In this study,
we report results for only isometric conditions due to space
constraints, although the overall model is structured to be
able to handle non-isometric conditions as well. The paper
is structured as follows: Section II presents the model in
detail, Section III presents the force variability results of
the model and discusses the implications of these results for
future work. Section IV concludes the paper.

II. NEUROMUSCULAR ELBOW MODEL

There are mainly two types of muscle models in the litera-
ture. First is motor unit (MU) pool-based models commonly
used to gain insight into isometric force variability. Second
is Hill-based muscle contraction models that are commonly
used to study numerous types of biomechanical movements
and their control.

Fuglevand et al. [5] proposed a MU pool-based model
that included both surface electromyogram (sEMG) and force
predictions under isometric conditions, in comparison with
experimental recordings. This model has become widely
accepted and has been adopted by many studies, and later
was extended to study effects of synchronization in MU pools
[6].

Hill-based models originated from Hill’s seminal work
on energetics of muscle contraction [7]. Zajac’s review of
muscle and tendon models [8] is the most comprehensive
reference on Hill-based muscle models. These are lumped-
parameter models that approximate the force-length and
force-velocity properties (or equivalently the dynamic be-
havior) of the musculotendon complex at a fidelity sufficient
to study biomechanics of multi-muscle or multi-joint move-
ments.

Selen et al. [9] proposed a combination of these two types
of models in their work where they studied whether co-
activation of muscles can be used as a strategy to decrease
variability. He showed that Hill-based models alone with
Gaussian stimulation noise cannot account for the force
variability observed experimentally in the literature [4], [10].
A model combining Hill-based muscle contraction with MU
pool recruitment and rate coding dynamics, however, was
found to be in agreement with experimental results and used
to explain that co-activation indeed can be a valid strategy
to reduce movement variability.
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Fig. 1. (a) An equivalent agonist-antagonist pair of uniarticular muscles drive the elbow joint in my model. (b) Each muscle consists of n = 60 motor units.
q denotes the active state for each motor unit. (c) Although Hill-based contraction models are commonly used in explaining lumped-parameter behavior of
whole muscles, in our model, each motor unit has a contraction behavior defined by an active contractile element (CE, muscle tissue) and a series elastic
element (SE) with nonlinear stiffness (tendon). See text for explanation of all variables. Also see the functional block diagrams corresponding to each level
of the model in Fig. 2

Selen et al.’s model [9] provided an attractive starting
point for our model since it combined widely accepted MU
pool models of force variability with Hill-based contraction
dynamics and musculoskeletal dynamics to study kinematic
variability. Our model most closely resembles that of Selen
et al. [9], and the contraction model is described in more
detail in the studies by Van Soest and Bobbert [11] and by
Ridderikhoff et al. [12]. The motor unit pool model is similar
to that of Selen et al. [9], however, we used parameter values
from Fuglevand et al. [5] for a portion of the parameters, due
to better agreement with experimental data for the biceps
muscle. A list of parameters with their units and detailed
explanations are not provided here due to space constraints
and the the reader is suggested to refer to the mentioned
references for this information.

1) Activation and Contraction Model: Similar to Selen
et al. [9], we used an agonist-antagonist pair of muscles
to drive the elbow. Our activation and contraction model
most closely follows the model by Ridderikhoff et al. [12].
Schematic representations of the model are illustrated in
Fig. 1 and functional block diagrams of three levels of the
model are given in Fig. 2. The activation-contraction model
block diagram is given in Fig. 2(a). The first order activation
dynamics of each motor unit is defined by

γ̇ =
c×nFR− γ

τγ

, τγ =

{
τact = 89msec, c×nFR≥ γ

τrel = 178msec, c×nFR < γ

(1)
where γ is the intramuscular concentration of Ca+2, c =
0.1373×10−3 is a gain coefficient, nFR is normalized firing
rate of motoneurons and τγ is the time constant, defined
differently based on activation and relaxation cases [12].
Active state q is dependent on the Ca+2 concentration and
the length of the contractile element lce through the nonlinear
relationship

q =
q0 +(ργ)3

1+(ργ)3 , ρ = Glce
λ −1

λ lce,opt − lce
(2)

where q0 = 0.005, G = 52700, and λ = 2.9.
The force exerted by each motor unit is calculated by the

equation

Fse =

{
ksel2

se, lse ≥ 0
0, lse < 0

(3)

where lse = lmtc− lce− lse,slack is the tendon elongation length,
lse,slack = 0.170 m is tendon slack length, lmtc = 0.312 m is
musculotendon complex length (it is given by lmtc = 0.312±
rθ for non-isometric simulations) and kse is the stiffness of
the tendon. kse values for each motor unit are determined at a
tendon elongation of 0.0333× lse,slack [8], [13] and depend on
the maximum force Fmax each motor unit can generate. Fmax
varies exponentially among motor units and is described in
detail later. Note that Fce = Fse due to the serial configuration.

The force-length relationship is given by

Fisom = max

(
1− 1

w2

(
lce

lce,opt
−1
)2

,10−5

)
(4)

where Fisom is the normalized maximum isometric force at
muscle length lce and w = 0.56 is parameter for the width
of the relationship. lce,opt = 0.136 m is the optimum fiber
length.

Concentric (shortening) contractions (Fce≤ qFmaxFisom) are
governed by the equation

˙lce =−υscalelce,opt

(
Fisom +υshape

Fce
qFmax

+υshape
−1

)
(5)

where

υscale = min(1,3.333q)Brel

υshape =

{
ArelFisom, lce ≥ lce,opt
Arel , lce < lce,opt

Arel = 0.41, Brel = 5.2.

Eccentric (lengthening) contractions (Fce > qFmaxFisom) are
governed by the equation

˙lce =
p1

Fce
qFmax

+ p2
+ p3 (6)
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Fig. 2. Block diagrams of the neuromuscular elbow model. See text for explanations of the blocks and parameter values. (a) Block diagram of the
activation and contraction model. (b) Block diagram of the motor unit pool model. Expanded version of the contraction block (highlighted in yellow) is
given in (a). (c) Block diagram of the elbow neuromusculo-skeletal system with an antagonist pair of muscles. Detailed version of the Muscle 1 block
(highlighted in yellow) is given in (b).

where

p1 =−υscale

σ

((1−Fecc)Fisom)2

Fisom +υshape

p2 =−FeccFisom

p3 =− p1

Fisom + p2

In these equations, Fecc = 1.5 represents the maximum
eccentric force as a fraction of Fisom and σ = 2 is the
ratio of eccentric and concentric contraction curves at zero
velocity. The activation and contraction model constitutes
a sub-component of the motor unit pool model (see Fig.
2(b), highlighted yellow block), which is described next. We
implemented a linear eccentric contraction condition to avoid
numerical problems in very low active states, similar to the
one defined by Ridderikhoff et al. [12], which is not reported
here, and the reader is referred to [12] for details.

2) Motor Unit Pool Model: A schematic representation of
the motor unit pool model is illustrated in Fig. 1(b). Fig. 2(b)
provides a block diagram of the model. The formulations
below follow closely that of Selen et al. [9], however some
parameters are replaced with values in [5].

A MU is recruited when excitatory input (E) exceeds
the recruitment threshold (RT E). RT Es of motor units vary
exponentially based on the equation

RT E(mu) = exp(mu(lnRR)/n) (7)

where mu represents the index of the motor neuron, RR = 75
is the recruitment range and n = 60 is the total number of
MUs. The firing rate of a recruited neuron is given by the
equation

FR(mu) = g(E−RT E(mu))+m f r, E ≥ RT E(mu) (8)

where the gain g = 1.36 and minimum firing rate m f r = 8
pps. FR saturates at 41.6 pps for all motoneurons. The
interspike interval (ISI(mu)) is calculated from the inverse
of FR(mu). A Gaussian noise with CV of 0.2 is added to the
ISI(mu), and this constitutes the main source of variability in
the model. After the noise is added, a normalized firing rate
(nFR(mu)) is calculated by inverting ISI(mu) with noise, and
dividing by maximum FR. To avoid saturation of motor unit
activation and hence force variability due to saturation in q
dynamics [9], nFR(mu) is halved. nFR(mu) provides both
the normalized stimulation input to the muscle activation-
contraction model, and the duration of this input, which
corresponds to the ISI(mu). The maximum force value for
each motor unit was calculated from the equation

Fmax(mu) = hexp(mu(lnRF)/n) (9)

where RF = 108.1 denotes the range of forces, giving a 1:100
ratio for the ratio of maximum forces of the first and the last
MUs. h is a constant used to obtain a total maximum force
of 2000 N for the whole muscle. The force outputs of all
MUs are summed to obtain the total muscle force following
the independent tendon model used by Selen et al. [9]. A
time step of 1 msec and Euler’s integration method are used
for the model.

III. RESULTS AND DISCUSSION

To evaluate the accuracy of the model in replicating
experimental force variability under isometric conditions,
plots of SD of force and CV of force vs mean force level
are generated and presented in Fig. 3. In these plots, each
data point is based on 20 simulations of the isometric
model for 3 sec, and only data within the last 2 sec (after
force stabilization) is used. Both mean and SD (across 20
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Fig. 3. Standard deviation (a) and coefficient of variation (b) of force, estimated from the isometric muscle model. Markers represent mean values, while
error bars represent standard deviation, both across twenty simulations. A comparison with experimental results by Taylor et al. [4] shows that the model
captures an accurate representation of experimental results.

simulations) of SD and CV of force are illustrated in these
plots. When compared with results by Taylor et al. [4] (see
Fig. 4 in this reference), it can be observed the model
captures an accurate representation of experimental results.
The trends in the SD of force closely resemble those from
experiments. The CV of force values from the model match
the experimental values reasonably well in the first quarter
of mean force levels. This low range of forces are the
most relevant range due to our focus on slow movements.
The model achieved a reasonable match with experimental
observations within the low force range and future work will
use the model in predicting kinematic (speed) variability
during slow movements. This way the model described in
detail here will be used in future work to seek an answer to
the question whether increased variability or intermittency of
slow movements can be explained by increased muscle force
variability in low force levels.

IV. CONCLUSION

We presented a neuromuscular model in detail for the
elbow, with the ultimate goal of using the model to explore
the effect of muscle force generation variability on kinematic
variability, especially during slow movements. The model
includes motor unit pool dynamics with Hill-based activation
and contraction dynamics for each motor unit. This structure
makes it possible to use the model for estimating both force
and kinematic variability in isometric and non-isometric
conditions. Results in this paper are limited to the isometric
case and are found to be in agreement with experimental
force variability characteristics reported in the literature.
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