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Abstract— Epilepsy is a neurological disorder that affects
tens of millions of people every year and is characterized by
sudden-onset seizures which are often associated with physical
convulsions. Effective treatment and management of epilepsy
would be greatly improved if convulsions could be caught
quickly through early seizure detection. However, this is still a
largely open problem due to the challenge of finding a robust
statistic from the neural measurements. This paper suggests
a new multivariate statistic by combining spectral techniques
with matrix theory. Specifically, stereoelectroencephalography
(SEEG) data was used to generate a series of coherence
connectivity matrices which were then examined using singular
value decomposition. Tracking the relative angles of the first
singular vectors generated from this data provides an effective
way of defining the most dominant characteristics of the SEEG
during the normal, the pre-ictal, and the ictal states. This
paper indicates that the first singular vector has a characteristic
direction indicative of the seizure state and illustrates a data
analysis method that incorporates all neural data as opposed
to a small selection of channels.

I. INTRODUCTION

Epilepsy is a chronic neurological disorder that affects
50 million people worldwide [1]. It elicits abrupt seizures,
which cause disabling convulsions, spasms, and possible loss
of consciousness [2], [3]. Medications taken regularly help
manage seizures, but results vary largely and are ineffective
in over 30% of patients [4]. A promising alternative is
deep brain stimulation (DBS) [5], [6], [7], [8], which uses
electrical stimulation to suppress approaching seizures. The
efficacy of both DBS and medications would be increased
significantly if they were administered at the earliest possi-
ble point in seizure development. Despite abundant neural
recordings obtained from implanted electrodes in epilepsy
patients undergoing ablative neurosurgery, early detection of
seizures is still largely an open problem.

A. Previous Work

Algorithms have been developed for early detection of
seizures from sequential neural measurements [9], [10], [11].
Several approaches use measures from nonlinear systems and
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chaos theory to capture when the brain activity transitions
from a less-orderly (or ”chaotic”) state to an orderly (or
”synchronized”) state (e.g. Lyapunov exponents [9], cor-
relation dimension [9], correlation density [12], dynamical
similarity [13], coarse grained flow average [14], etc.). Other
approaches exploit spectral theory and relate seizure onset to
significant modulations of power in different frequency bands
[15], [16]. Finally, a few studies compute phase synchroniza-
tion measures between at most two distinct channels and
identify a seizure when such synchronization significantly
increases [11], [17]. These approaches do not exploit the
multivariate nature of the recordings, and may therefore
neglect important network information that accounts for the
underlying brain physiology. While they can be computed
efficiently, these statistics also may not capture network
dynamics critical to observing changes in the hidden clinical
state.

II. METHODS

A. Data Collection Details

The data analyzed in this study are Stereotactic-EEG
(SEEG) recordings performed at the Cleveland Clinic. This
stereo-angio-fluoroscopic guided placement of depth elec-
trodes is used for pre-operative monitoring [18]. In compar-
ison to traditional techniques, these electrodes provide more
complete coverage of the brain including lateral, intermediate
and/or deep structures in a three-dimensional arrangement.

Invasive monitoring digital samples were recorded using
the Nihon Kohden 1200A EEG diagnostic and monitor-
ing system (Nihon Kohden America, Foothill Ranch, CA,
USA) during the period of extra-operative monitoring at the
Epilepsy Monitoring Unit (M60, main campus, Cleveland
Clinic). Patient 1 had 14 electrodes implanted with 197
contacts and Patient 2 had 141 contacts. All data was band-
pass filtered (0.080 Hz to 250 Hz) and digitized (10 KHz).

B. Multivariate Analysis

In this paper, we describe a method which shows how
spectral analysis and matrix theory can be combined to
compute a multivariate statistic from multi-site SEEG record-
ings in epileptic patients. First, multiple simultaneous neural
measurements are translated into connectivity matrices that
describe the time dependent correlation (spectral coherence
[19] at a specific frequency) between channels. Then, the sin-
gular value decomposition [20] of each connectivity matrix
is computed to analyze how the direction of the first singular
vector changes over time. Our approach measures changes in
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network structure over time and integrates information from
all channels in contrast to single and bivariate statistics.

C. Equations and Techniques

Recent studies have introduced multivariate schemes that
include all electrode channels in their analyses [21], [22].
In these schemes, each electrode is treated as a node in a
graph, and any two nodes are considered to be connected
(an edge exists between their nodes) if the activity at the
two sites are dependent. The connectivity or topology of the
graph can then be described by a matrix. Statistics are then
computed from the matrix to see if the topology changes
significantly in different clinical states (e.g. inter-ictal, pre-
ictal). Any significant change in the statistics can then be
used to detect a seizure’s onset.

1) Coherence: The connectivity matrix, A has been com-
puted using the spectral coherence between the signal in
channel i, Xi, and the signal in channel j, Xj , in a specific
frequency (see section II, subsection D for more details) [22].
The matrix is recomputed for each stage of a sliding time
window. That is,

Aij =

∣∣PXiXj

∣∣2
PXiXi

PXjXj

(1)

where PXiXj
is the cross spectrum, and PXiXi

and PXjXj

are the power spectra of signals Xi and Xj at a given fre-
quency, respectively. Coherence is widely used as a measure
of correlation in the brain.

2) Singular Value Decomposition: The structure of the
multivariate connectivity matrices, generated using the co-
herence between all channels of the SEEG recording, were
analyzed using singular value decomposition [20]. SVD is
a representation of a matrix that highlights properties such
as the rank, range space, and null space associated with the
matrix. The SVD method partitions the connectivity matrix
into its column and row spaces and associated null spaces.
The vectors that span the column and row spaces correspond
to the dominant pathways through the connectivity matrix.
The singular value decomposition (SVD) of an m x n matrix
A is defined as

A = USV ∗ = U


σ1

. . . 0
σr

0 0

V ∗ (2)

In the SVD, U is an m x m unitary (i.e. UU∗ = 1)
matrix whose columns are the eigenvectors of the matrix
AA∗, and V is an n x n unitary matrix whose columns are
the eigenvectors of the matrix A∗A. A∗ is defined as the
complex conjugate transpose of A. SVD has the advantage
that, unlike eigenvalue decomposition, it can be extended
to future work on non-symmetric connectivity matrices. The
matrix S is an m x n matrix whose first r diagonal entries
σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of A.
Finally, r is the rank of A [20]. The first r columns of U
span the column space of A and the first r rows of V span

the row space of A. When m = n and A is symmetric, the
SVD reduces to the conventional eigenvalue decomposition,
where the singular values are the square of the eigenvalues of
A, U = V , and the columns of U and V are the eigenvectors
of A [20].

D. Signal Processing
The data were divided into one second windows (500

points) that overlapped by 50%. A Hamming window of the
same length was applied and a spectrogram generated for
each one second window after subtracting out the window
specific mean. The following analysis was done to select the
best frequency to evaluate the coherence. The spectrograms
were averaged across the pre-ictal period on a frequency by
frequency basis. The spectrograms spanning the seizure pe-
riod were also averaged separately. The average spectrogram
from the seizure period was divided by the average spec-
trogram during the pre-ictal period. The resulting frequency
specific ratios were seen as a measure of which frequencies
were the most modulated by the seizure event. The frequency
showing the most modulation in Patient 1 was 19 Hz and
86 Hz in Patient 2. This was selected to be the frequency
at which coherence was calculated between channels. An
overview of the signal processing preformed is shown in
Fig. 1.

A connectivity matrix was then constructed for each one
second window as mention in the previous section where
the element (i,j) in the array corresponds to the coherence
between the ith and jth channel. The connectivity arrays
were averaged together over the span of five seconds (9
windows) where the window that would appear in adjoining
time frames due to overlap was disregarded for this analysis
to prevent duplication of data between time frames. This
results in a series of time frames (matrix A(j)), each repre-
senting 5 seconds of data. The total number of time frames
differed between the two patients due to various lengths of
data available.

Singular value decomposition was then performed on each
time frame independently. Since in this case the connectivity
array is symmetric, SVD is equivalent to the eigenvalue
decomposition. The first singular vector (first column in V
or row in V ∗) now points a particular direction in higher
dimensional space. This vector has the largest singular value
and represents the dominant structure in the connectivity
matrix at that time. In fact, the components of this vector
are proportional to the Eigenvector Centrality of each node,
which is a measure of importance of each node in a network
[23].

Although visualizing the direction and progression of the
vector is difficult, the relative direction can be analyzed
throughout the pre-ictal and ictal periods. The first singular
vectors were then combined into a matrix B, where the jth
column of B is defined as the 1st singular vector V1 at time
frame j.

B∗j ≡ V1(j) (3)

Finally, the inner product of the mean ictal singular
vector and the first singular vector from each time window
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Fig. 1. Signal Processing Overview - An overview of the data processing
method. The coherence arrays are calculated from raw SEEG data. Singular
value decomposition is then performed. The inner product of the average
first singular vector from the ictal period with each coherence array(5 second
time frame) is computed. This statistic is then tracked over time.

was calculated to determine if the first singular vector had
a characteristic direction during seizure and whether the
dominant direction of the connectivity matrix changes during
seizure onset. We plan to use the time dependent structure of
the dominant direction of the connectivity matrix as a way
to detect the onset of seizures.

III. RESULTS

A. Spectrogram and Coherence Results

The spectrogram for Patients 1 and Patient 2 are shown
in Fig. 2 A. Representative signals from one electrode are
shown time-matched to the spectrogram. It can be seen that
the increase in power occurs at a higher frequency in Patient
2 as opposed to Patient 1. From these, coherence connectivity
matrices were computed. Examples of these connectivity
matrices are shown in Fig. 3.

B. Singular Value Decomposition Results

In Fig. 2 C, a visual break can be seen in the data where
the dashed black line marks the onset of the seizure. This
is quantified in Fig. 2 D where the average first singular
vector is computed from the ictal time, and the inner product
is taken with each subsequent first singular vector. The 80
seconds of seizure data were used to generate the average
ictal first singular vector for both Patient 1 and Patient 2.
As can be seen in Fig. 2 D, the inner product remains low
during the pre-ictal period but climbs quickly around the
onset time. This leads to a key discovery. The direction of
the first singular vectors during the seizure time are similar
(high inner product), but distinct from the direction of the
first singular vectors throughout the pre-ictal period (low
inner product). This indicates that the first singular vector
has rotated and the structure of the network is changing
significantly as the seizure develops.
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Fig. 2. Aligned Signals - The left column represents Patient 1 and the
right, Patient 2. A is a spectrogram generated from the full SEEG data. B is
the voltage reading from a representative electrode. C is matrix B for each
patient with each column representing a five second period from the SEEG
recording. D is the inner product result of an average first singular vector
taken from the ictal period with the first singular vector at each time.

IV. DISCUSSION

The data indicate that the first singular vector achieves a
characteristic direction during seizure. This is indicated by
the high inner products between singular vectors from times
throughout the seizure duration and the average ictal vector.
In addition, this direction seems to be distinct from the typ-
ical direction during the pre-seizure time period as indicated
by a low inner product between the average ictal vector
with those in the pre-ictal period. This direction seems both
stable throughout the seizure duration and different from the
normal behavioral state of the brain. If this pattern continues
throughout all seizures in an individual, tracking the direction
of the first singular vector in high-dimensional space may
provide a powerful statistic for accurately detecting clinical
seizure onset.

V. CONCLUSION AND FUTURE WORKS

Confirming the usefulness of tracking the direction of the
first singular vector from connectivity matrices will require
validation with multiple data sets from each individual. In
addition, epileptic events from a wide variety of subjects
should be studied to ensure that the direction of the first
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Fig. 3. Coherence Matrix Examples - A(5) and A(12), two examples
of connectivity matrices from Patient 1 are shown above. The left, A(5), is
from the pre-ictal period and the right, A(12), is from the start of the ictal
period.

singular vector is a robust statistic for seizure detection
across individuals. With this information a system could be
built that would warn the subject when the first singular
vector of their neural activity (viewed as a connectivity
matrix) rotates towards a direction known to be associated
with their seizures.
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