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Abstract—In this work we perform gene expression profiling 

on tissue specimen obtained from patients with oral squamous 

cell carcinoma with a twofold aim: i) to identify a limited 

number of genes that capture perturbations at molecular level 

dictating the development of a potential disease relapse after 

remission, and ii) to employ these genes in order to build a 

classifier that is able to calculate the probability of disease 

reoccurrence for new patients, subsequently discriminating 

patients into high and low risk groups based on reoccurrence 

probability. The proposed analysis yielded 94% overall 

accuracy, 100% sensitivity and 89% specificity, for 

discriminating patients with and without a disease relapse.  

I. INTRODUCTION 

RAL cancer is the predominant neoplasm type that 

arises in the head and neck region, subsequently 

constituting the eighth most common cancer in the 

worldwide cancer incidence ranking [1]. Besides the low 

quality of life of patients suffering from oral cancer, another 

major issue has to do with reoccurrence rates after the 

disease has reached remission; specifically, locoregional 

relapses after successful treatment of the primary tumor have 

been reported in the range of 25-48%, of which 95% occur 

within 2 years. There is a strong relation between oral cancer 

and the sex of the patient, with men facing twice the risk of 

being diagnosed with oral cancer than women [1]. 

Moreover, a wide range of risk factors have been associated 

with oral cancer, such as smoking, especially coupled with 

alcohol consumption, as well as sun exposure and HPV 

infection [1].  

Currently implemented methods aiming to predict oral 

cancer reoccurrence after remission, have reported quite 

unsatisfactory results [2]. From the clinical point of view, 

several factors have been associated with the reoccurrence of 

oral cancer, such as age, site and stage of the primary tumor 

as well as certain histological features. Moreover, especially 

in the molecular basis of the disease, currently available 

biomarkers are limited in number and efficacy [3]. The 
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identification of new features and the efficient combination 

of the already known ones will greatly contribute towards 

the accurate and more reliable prognosis of the disease. 

In the literature several methodologies have been 

proposed for the identification of molecular markers that are 

involved in the induction and evolvement of oral cancer or 

slightly similar types of cancers. Those markers are in turn 

employed for discriminating between patients with high and 

low risk of developing a disease reoccurrence in adjacent 

tissues or a lymph node metastasis. Specifically, [4, 5] 

derive an expression profile for diagnosis of lymph node 

metastasis from primary head and neck squamous cell 

carcinoma; similarly, in [6], future metastases of head and 

neck carcinoma are predicted. In [7-9] the progression of 

tongue carcinoma is studied, and a subset of genes with 

predictive potential is identified able to predict potential 

metastasis of the primary tumor in the lymph nodes. 

In the current work, we perform a systematic analysis 

upon a multitude of genes in order to pinpoint genetic 

biomarkers that potentially dictate the progression of oral 

cancer. Subsequently, we develop a classification scheme 

which employs the aforementioned genes in order to early 

identify a disease reoccurrence. Knowing in advance the 

progression of the disease, we are able fine-tune accordingly 

the follow-up; i.e. patients in low risk of reoccurrence are 

subject to the traditional (or less intensive than the 

traditional) follow-up, whereas for patients in high-risk of 

developing a relapse adequate further diagnostic and 

treatments measures are undertaken.  

II. MATERIALS AND METHODS 

A. Clinical Scenario 

The clinical scenario employed during this work, is 

depicted in Fig. 1. Initially a patient is diagnosed with oral 

cancer through traditional clinical procedures. At this point, 

(i.e. the baseline) the physician gathers genetic data from the 

tumor site, and the patient is then treated properly. After the 

physician’s therapeutic intervention (i.e. surgery, 

chemo/radio-therapy), the patient either reaches complete 

remission or particles of the cancer tissue still remain intact. 

In the latter case the patients do not qualify for the purposes 

of our study, whereas patients in complete remission are 

being monitored for a follow-up period of 18 months. Based 

on expert knowledge the vast of majority of relapses appear 

within an 18 month follow-up timeframe. 

Subsequently, two classes of patients are assembled, i.e. 
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relapsers and non-relapsers. The formulation of the relapsers' 

class is pretty straightforward and contains patients 

developing a disease reoccurrence after treatment. However, 

in order to conjecture about non-relapsers, we require that a 

patient must have been disease-free for at least 12 months 

after the initial treatment. 

 
Fig. 1: The clinical scenario. 

 

Table I contains the list of patients eligible for our study, 

the respective months of follow-up and each patient's current 

disease status. 
 

TABLE I 

STATUS AND STATE OF ENROLLED PATIENTS 

# State (month) Status # State (month) Status 

1 18 NR 14 18 NR 

2 12 NR 15 18 NR 

3 9 R 16 18 NR 

4 15 NR 17 15 R 

5 12 NR 18 12 NR 

6 18 NR 19 12 NR 

7 18 NR 20 15 NR 

8 15 NR 21 9 R 

9 15 NR 22 6 R 

10 12 NR 23 18 NR 

11 12 NR 24 9 R 

12 6 R 25 6 R 

13 12 NR    

NR: No reoccurrence; R: Reoccurrence 

B. Data acquisition 

At the baseline state of each patient, we extract from the 

cancerous tissue the expression of 45,015 genes. During this 

study all microarray experiments have been conducted using 

the same platform, the same array design and the same 

feature extraction software version in order to minimize the 

risk of possible sources of variability in the data, other than 

biological variability. Specifically, the 4x44K oligo-RNA 

human genome arrays from Agilent Technologies (Santa 

Clara, US) have been employed and processed using the 

Feature Extraction software V9.5 (Agilent Technologies). 

The resulting gene expression files are subject to some basic 

preprocessing steps in order to enhance the quality of the 

input; initially all control and duplicate genes are removed, 

as well as genes of too low quality (i.e. genes with high 

variability of inter-spot intensities) and genes with missing 

values. The outcome of the preprocessing step is a set of 

33491 high-quality genes. 

C. Gene identification 

In the next step we systematically analyze the expression 

of the remaining 33491 genes in order to identify a limited 

set of genes that more selectively and more precisely 

characterize the different classes of patients examined in this 

work, namely patients with and without a disease 

reoccurrence, while accounting for the enormous number of 

genes. For this purpose we employ the Significance Analysis 

of Microarrays (SAM) algorithm [10], which analyzes 

differentially gene expression data between two groups and 

assigns a score to each gene based on the change in gene 

expression between the two classes of patients. SAM 

pinpoints genes as being statistically significant 

differentially expressed in two sets, by assimilating several 

gene-specific t-tests on permutations of the initial dataset. 

Subsequently a score is attached to each gene based on its 

perturbation in gene expression relative to the standard 

deviation of repeated measurements for that gene. Multiple 

tests have been performed by varying the fold-change, i.e. 

the amount that genes between the two classes change in 

order to be considered as significant. Table II contains the 

values of the fold-change applied in each run of the SAM 

algorithm, the number of genes maintained each time and 

the genes identified as false positives, both in percentage and 

in absolute numbers.  
 

TABLE II 

NUMBER OF GENES IDENTIFIED AS SIGNIFICANT FOR VARIABLE VALUES OF 

FOLD-CHANGE BETWEEN THE TWO SETS OF PATIENTS 

Fold change # of significant genes FDR (%) # of false positives 

1.0 2 0.55 1.1 

1.2 1 0 0 

1.5 40 13 5.5 

1.8 6 0 0 

2.0 0 0 0 

2.5 0 0 0 
 

Setting a threshold of at least 1.5 fold-change between the 

two sets patients, we obtain a list of 40 genes, as it is shown 

in Table III.  
 

TABLE III 

GENES PINPOINTED AS MOST SIGNIFICANT 

LPO TMC5 AI916628 CA946373 

MSLN ROPN1 PIGR CLDN8 

CAPN13 AGR2 C20orf114 CTAG1A 

GLYATL2 SCGB1D1 CP SCGB3A1 

CB959193 LOC440335 C10orf81 LOC63928 

CLDN22 THC2339617 VTCN1 OLFM4 

BCMP11 UPK1B SCGB2A1 KCNJ16 

C20orf85 CRISP2 MSMB LOC124220 

SCGB2A2 CHST9 FOXA1 PIP 

SLC34A2 PROM1 C10orf81 STATH 

In Fig. 2 we also provide the respective heatmap depicting 

the expression of each retained gene, for all patients 
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considered. 
 

 
Fig. 2: Heatmap of the 40 most significant genes. 

 

In order to further validate the list of procured genes, a 

series of state of the art methodologies are also employed for 

our dataset. Specifically, eBayes [11], PLS-CV [12], RF-

MDA [13] as well as an ensemble methodology that 

combines the previous ones are invoked [14]. It is worth 

noticing that 29 out of the 40 maintained genes are common 

between our approach and in at least one of the other four 

algorithms, thus, verifying the validity of the proposed set of 

genes (genes identified by each methodology are not shown 

due to space limitations). 

D. Class imbalance 

Next, we utilize the genes identified as significant with 

the aforementioned analysis, in a classification algorithm 

able to discriminate patients with and without relapse based 

on the differential expression of those genes. The resulting 

dataset contains 25 patients (7 patients with a relapse and 18 

relapse-free), for which the expressions of the 40 genes in 

Table III, formulate the features used for classification. In 

order to overcome the apparent class imbalance in our 

dataset, we employ the Synthetic Over Sampling Technique 

(SMOTE), which instead of merely replicating the instances 

of the minority class, uses a k-NN approach in order to 

create a new case which resembles and combines the 

available ones [15]. Using this approach we expand the 

minority class with new cases that resemble the available 

ones but are not identical, resulting eventually in a fully 

balanced dataset of 36 cases. 

E. Feature selection 

In the next step we employ two popular feature selection 

algorithms in order to further search across the 40 retained 

genes the feature subset that is most informative from a 

classification perspective. First the Correlation-based 

Feature Subset Selection (CFS) algorithm [12] which 

evaluates the worth of a subset of attributes by considering 

the individual predictive ability of each feature along with 

the degree of redundancy between them. The Wrapper 

algorithm [16] was also employed which uses the target 

learning algorithm as a “black-box” to estimate the worth of 

attribute subsets by measuring accuracy estimates. Feature 

wrappers often outperform other feature selection schemes 

due to the fact that they are tuned to the target machine 

learning algorithm. 

F. Classification 

In terms of classification, five popular classification 

schemes are examined, namely: Bayesian Networks (BN), 

Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), Decision Trees (DT) and Random Forests 

(RF). For further details regarding the aforementioned 

classifications schemes see e.g. [17]. 

III. RESULTS AND DISCUSSION 

For evaluation purposes, we calculate accuracy (Acc), 

sensitivity (Se) and specificity (Sp) after performing 10-fold 

cross validation. Sensitivity is defined as the fraction of 

correctly identified relapsing patients, specificity measures 

the proportion of disease-free patients predicted as non-

relapsing ones, and accuracy is the weighted average of the 

sensitivity and specificity denoting the overall correctness of 

the model. In the current analysis, special attention is given 

in sensitivity, i.e. the identification of almost all possible 

relapsing patients, (provided that specificity and 

consequently accuracy are adequately high) in order to 

undertake necessary adjuvant treatment. In the tables that 

follow we present the results obtained with each classifier 

either without performing feature selection (Table IV) or 

after employing the CFS (Table V) and wrapper (Table VI) 

algorithms in order to identify the features with the highest 

discrimination potential. 
TABLE IV 

RESULTS OBTAINED WITHOUT PERFORMING FEATURE SELECTION 

Classification algorithm Acc (%) Se (%) Sp (%) 

BN 83.3 88.9 77.8 

ANN 83.3 88.9 77.8 

SVM 88.9 94.4 83.3 

DT 77.8 66.7 88.9 
RF 77.8 77.8 77.8 

 

Next, we employ the CFS algorithm for feature selection, 

yielding the following features as most significant: MSLN, 

CAPN13, GLYATL2, CLDN22, CTAG1A and LOC63928. 

The results obtained with the reduced input vector are shown 

in Table V. 
TABLE V 

RESULTS OBTAINED AFTER EMPLOYING THE CFS ALGORITHM 

Classification algorithm Acc (%) Se (%) Sp (%) 

BN 86.1 83.3 88.9 

ANN 86.1 94.4 77.8 

SVM 88.9 100 77.8 
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DT 75 66.7 83.3 
RF 77.8 72.2 83.3 

 

Afterwards, we employ the wrapper algorithm for feature 

selection, which retains the following genes for the best 

performing classification algorithms, specifically for BN: 

MSLN and CAPN13; and for ANN: MSLN, CAPN13, 

C20ORF85, MSMB and OLFM4. 
 

TABLE VI 

RESULTS OBTAINED AFTER EMPLOYING THE WRAPPER ALGORITHM 

Classification algorithm Acc (%) Se (%) Sp (%) 

BN 94.4 100.0 88.9 

ANN 94.4 100.0 88.9 

SVM 91.7 94.4 88.9 

DT 91.7 94.4 88.9 

RF 91.7 94.4 88.9 
 

In all cases the employment of the wrapper algorithm 

significantly ameliorates the obtained results. The 

classification schemes that yielded the highest results are the 

Bayesian Network and the Artificial Neural Network 

coupled with the wrapper algorithm. However, the BN is 

slightly preferable due to its transparent architecture as well 

as the simplicity owed to the less number of retained genes, 

namely MSLN and CAPN13. MSLN encodes a precursor 

protein that is cleaved into megakaryocyte potentiating 

factor and mesothelin. Especially mesothelin has been found 

to be overexpressed in epithelial mesotheliomas [18] and 

other types of squamous cell carcinomas [19], as is the case 

of oral cancer. CAPN13 belongs to calpains, a protein family 

that has been involved in a variety of cellular processes, 

including apoptosis, cell division and many others [20]. 

Perturbations in calpain activity have been associated with 

pathophysiological processes contributing to type II diabetes 

and certain types of cancer [20]. 

Table VII provides a comparison among the 

methodologies reported in the literature and the best 

performing scheme elicited within the current work. 
 

TABLE VII 
COMPARISON BETWEEN THE CURRENT WORK AND THE LITERATURE 

Method Number of patients Acc (%) 

Roepman [4] 66 88 

Roepman [5] 22 86 

Rickman [6] 79 77 

Watanabe [7] 39 76 

Nagata [8] 75 87 

Zhou [9] 25 85 

Current Work 21 94 
 

We observe that the results obtained in the current work 

are slightly superior compared to other methodologies 

reported in the literature. However, direct quantitative 

comparison cannot be performed since all methodologies 

have been evaluated on different sets of patients. 

IV. CONCLUSIONS 

In this work we have analyzed the expression of a 

multitude of genes, in order to identify a limited subset of 

genetic factors that potentially dictate the evolvement of the 

disease after remission; those genes have been subsequently 

employed towards the utilization of a classification scheme 

able to discriminate between patients with and without 

relapse. Hence, we are able to enhance our knowledge 

regarding the molecular basis of the disease, but 

additionally, the timely prediction of a potential relapse 

allows for fine-tuning accordingly the follow-up treatment. 

REFERENCES 

[1] R. I. Haddad and D. M. Shin, "Recent advances in head and neck 

cancer," N EJM, vol. 359, pp. 1143-54, 2008. 
[2] A. Forastiere, R. Weber, and K. Ang, "Treatment of head and neck 

cancer," N EJM, vol. 358, pp. 1076; author reply 1077-8, 2008. 

[3] N. J. D'Silva and B. B. Ward, "Tissue biomarkers for diagnosis & 
management of oral squamous cell carcinoma," Alpha Omegan, vol. 

100, pp. 182-9, 2007. 

[4] P. Roepman, P. Kemmeren, L. F. Wessels, et al., "Multiple robust 
signatures for detecting lymph node metastasis in head and neck 

cancer," Cancer Res, vol. 66, pp. 2361-6, 2006. 

[5] P. Roepman, L. F. Wessels, N. Kettelarij, et al., "An expression 
profile for diagnosis of lymph node metastases from primary head and 

neck squamous cell carcinomas," Nat Genet, vol. 37, pp. 182-6, 2005. 

[6] D. S. Rickman, R. Millon, A. De Reynies, et al., "Prediction of future 
metastasis and molecular characterization of head and neck squamous-

cell carcinoma based on transcriptome and genome analysis by 

microarrays," Oncogene, vol. 27, pp. 6607-22, 2008. 
[7] H. Watanabe, K. Mogushi, M. Miura, et al., "Prediction of lymphatic 

metastasis based on gene expression profile analysis after 

brachytherapy for early-stage oral tongue carcinoma," Radiother 
Oncol, vol. 87, pp. 237-42, 2008. 

[8] T. Nagata, R. Schmelzeisen, D. Mattern, et al., "Application of fuzzy 

inference to European patients to predict cervical lymph node 
metastasis in carcinoma of the tongue," Int J Oral Maxillofac Surg, 

vol. 34, pp. 138-42, 2005. 

[9] X. Zhou, S. Temam, M. Oh, et al., "Global expression-based 
classification of lymph node metastasis and extracapsular spread of 

oral tongue squamous cell carcinoma," Neoplasia, vol. 8, pp. 925-32, 

2006. 
[10] V. G. Tusher, R. Tibshirani, and G. Chu, "Significance analysis of 

microarrays applied to the ionizing radiation response," PNAS, vol. 

98, pp. 5116-21, 2001. 
[11] G. K. Smyth, J. Michaud, and H. S. Scott, "Use of within-array 

replicate spots for assessing differential expression in microarray 

experiments," Bioinformatics, vol. 21, pp. 2067-75, 2005. 
[12] M. Hall, "Correlation-based feature selection for discrete and numeric 

class machine learning," in 17th Int Conf on Machine Learning, 2000, 

pp. 359-366. 
[13] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 

2001. 
[14] E. Glaab, J. M. Garibaldi, and N. Krasnogor, "ArrayMining: a 

modular web-application for microarray analysis combining ensemble 

and consensus methods with cross-study normalization," BMC Bioinf, 
vol. 10, p. 358, 2009. 

[15] N. Chawla, K. Bowyer, L. Hall, et al., "SMOTE: synthetic minority 

over-sampling technique," J of Artif Intel Res, vol. 16, pp. 321-357, 
2002. 

[16] R. Kohavi and G. John, "Wrappers for feature subset selection," Artif. 

intel., vol. 97, pp. 273-324, 1997. 
[17] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining, 

1st ed. Boston: Pearson Addison Wesley, 2006. 

[18] K. Tan, K. Kajino, S. Momose, et al., "Mesothelin (MSLN) promoter 
is hypomethylated in malignant mesothelioma, but its expression is 

not associated with methylation status of the promoter," Hum Pathol, 

vol. 41, pp. 1330-8, 2010. 
[19] C. Y. Liu, M. C. Wu, F. Chen, et al., "A Large-scale genetic 

association study of esophageal adenocarcinoma risk," 

Carcinogenesis, vol. 31, pp. 1259-63, 2010. 
[20] T. N. Dear and T. Boehm, "Identification and characterization of two 

novel calpain large subunit genes," Gene, vol. 274, pp. 245-52, 2001. 

8310


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

