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Abstract—We discuss how to use special Cosserat rod theory
for deriving distributed-parameter static equilibrium equations
of magnetic catheters. These medical devices are used for
minimally-invasive diagnostic and therapeutic procedures and
can be operated remotely or controlled by automated algo-
rithms. The magnetic material can be lumped in rigid segments
or distributed in flexible segments. The position vector of
the cross-section centroid and quaternion representation of
an orthonormal triad are selected as DOF. The strain energy
for transversely isotropic, hyperelastic rods is augmented with
the mechanical potential energy of the magnetic field and
a penalty term to enforce the quaternion unity constraint.
Numerical solution is found by 1D finite elements. Material
properties of polymer tubes in extension, bending and twist are
determined by mechanical and magnetic experiments. Software
experiments with commercial FEM software indicate that the
computational effort with the proposed method is at least one
order of magnitude less than standard 3D FEM.

I. INTRODUCTION

A magnetic catheter is an interventional device containing

permanent or permeable magnets, navigated in a patient’s

body lumens by steering at the distal tip using an external

magnetic field B and by changing the inserted length L at

the proximal end by an advancer. In contrast to manually

manipulated catheters which are bent at the tip using pull

wires and twisted by a handle at the proximal end to change

the plane of bending, magnetic catheters do not need torque

transmission via their shaft since the field can rotate the

tip. Combined with a localization system that measures tip

position and orientation, an X-ray or ultrasound imaging

system, other physiological sensors such as ECG, pressure

or force, end-effectors such as ablation electrodes, biopsy

probes and a software platform that adds visualization,

automation and control, these catheters can be teleoperated

by human physicians at a workstation placed in a control

room which may be adjacent to the surgical room or placed

in a remote location. Mechanical modeling of these devices

is valuable for many practical purposes: Visual feedback of

virtual device to the operator, simulation for training and

pre-procedure planning, design optimization and automatic

control. With the help of varying degrees of automation

implemented in firmware and software, the efficacy and

efficiency of minimally-invasive medical procedures may

potentially be improved with likely less risk for the patient

and less X-ray exposure for the physician.

Typically, the body of a catheter is made from an extruded

thermoplastic polymer which may be irradiated to increase
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cross-linking, making it more “elastomeric.” The body may

be reinforced with coils or braids to improve kink resistance

and pushability and loaded with a radiopaque substance for

fluoroscopy. While this work uses a cardiac electrophysi-

ology catheter with a polymer body as the subject, similar

elongate devices such as guide wires, endoscopes, sheaths

and other application areas such as the vasculature, lungs,

kidneys, brain etc. can be considered by selecting appropri-

ate materials (e.g. polymer, steel, nitinol) and by tailoring

the dimensions and construction of structural and magnetic

parts. The modeling method described herein applies to all

such elongate devices using rigid or flexible electromagnets

or permanent magnets whose volumetric magnetization is

independent of the external field, hence excludes permeable

materials. These magnetic materials may be placed at ar-

bitrary intervals or distributed with axially varying density

along the device body. However, constitutive relationships

between stress and strain of the selected materials must be

determined experimentally after they have been formed into

a part. For instance, for polymers, these relationships are

not isotropic due to molecular chain layout and the extrusion

process; they depend heavily on temperature and sometimes

on water absorption if uncoated; and manufacturer’s speci-

fications for a sample material in terms of Young’s modulus

and shear modulus or Poisson’s ratio are not adequate for

precise engineering purposes. Polymers are viscoelastic and

they can go into the plastic range if care is not taken.

Furthermore, when a polymer is reinforced with a metal

coil or braid, properties of the assembled part cannot be

easily calculated from those of its constituents.

Here we will restrict our model to spatially uniform,

externally generated magnetic fields. Time variation of the

actuation (B field plus advancer) and surrounding tissues

are assumed to be much slower than the dynamics of the

catheter. Therefore, static equilibrium configurations can ap-

proximate a moving time average of dynamic configurations

and seem to be adequate for most medical catheterization

applications. Our formulation follows the special Cosserat

rod theory described in [1], [2] and references therein. The

kinematic formulation is intrinsically one-dimensional (1D)

in contrast to reduction from 3D elasticity. For our appli-

cation there are two motivating factors: First, the resulting

finite-element model (FEM) uses a 1D domain parametrized

by the arc length s in the reference configuration and thus

yields significant computational savings compared to 3D

FEM; second, it is time consuming and expensive to identify

anisotropic material properties of polymers and polymer-

metal parts in 3D. Instead, the 1D formulation allows us to
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determine the constitutive relationships between strains and

internal forces by experimenting on manufactured (but not

assembled) tubing segments.

II. STATIC MODEL

When a magnetic catheter with discrete rigid magnets

is in free-space, extending from a sheath or support, its

centroid curve is planar, there is no twist, and curvatures

of homogeneous segments completely determine the equi-

librium configuration [3]. When there is contact with tissue

only at the tip, then a closed-form solution is still possible

using Jacobi elliptic functions [4]. However, for distributed

magnetic materials with arbitrary magnetization direction,

and when the catheter makes contact at multiple locations,

twisting and shear deformation occur in addition to bending.

At every point in the domain six degrees-of-freedom (DOF)

are required as functions of the reference arc length s.

These can be selected as the strain variables: Two for

bending κ1(s), κ2(s), two for shear ν1(s), ν2(s), one for

extension ν3(s), and one for twist κ3(s). Alternatively, the

position vector of the cross-section centroids r(s) and an

orthonormal triad {di(s)}, i = 1, 2, 3 may be used. First

two vectors of the triad are called “directors” and they span

the cross-section. Denote by ·′ differentiation with respect

to s. This triad rotates as

d′

i = κ× di , κ
def

=
∑

i

κidi . (1)

The rotational DOF may also be represented by a proper

orthogonal matrix R(s) ∈ SO(3), transforming the standard

basis {ei} of R
3 to the local basis of the directors. In the

case of straight rods with negligible shear and extension, the

latter method leads to an efficient, custom FE discretization

based on beam elements [5], which is particularly useful for

control design [6]. However, representing the three rotational

DOF with six variables in d1, d2 and three orthonormality

constraints (or nine variables and six constraints for R)

necessitates special integration methods at every step of

the solution to maintain these constraints since standard

methods like Runge–Kutta are inappropriate [7]. If one

wishes to use commercial or standard FE packages instead,

then a useful reduction to four variables is afforded by using

quaternions q = q0 + q, with norm |q|
def

=
√

q2

0
+ q · q = 1.

Other alternatives include keeping the directors as main

variables, but transforming them to and from quaternions

only for the configuration update [8]; expressing strain

variables in quaternions and using coordinate projection at

every step [9] to enforce the unity constraint; deriving the

equations of motion in quaternion algebra and using index

reduction for the resulting differential-algebraic system fol-

lowed by a stiff integration method [10]; using r, R and

strain variables all together in a two-point shooting scheme

for the resulting first order ODE’s [11].

We prefer a commercial general-purpose FE environment,

such as Comsolr for our rod model not only to save time in

programming but also for the ability to couple this structural

mechanics problem to other physics (fluid, thermal, etc.).

For this reason, we choose quaternions to represent rotations

as

R = [d1, d2, d3]

=
(

q2

0
− q · q

)

I3×3 + 2q ⊗ q + 2q0Q , (2)

where Q is the skew-symmetric matrix corresponding to q.

Denoting the alternating symbol by ε, the strain variables in

terms of the DOF (r, q) are

κi =
1

2

∑

j,k

εijkd′

j · dk , (3)

νi = r′ · di . (4)

The unity constraint is enforced by adding a penalty term

P =
1

2

(

q2

0
+ q · q − 1

)2

(5)

to the total potential energy. Indeed, this approach is not only

mathematically convenient but also equivalent to scaling the

directors in the deformed configuration corresponding to

uniform distention of the cross-section. A hollow tube filled

with pressurized fluid, such as blood vessels would have this

behavior.

Since catheter tubes are made by extrusion it is reasonable

to assume that the material is transversely isotropic. In this

case, the most general hyperelastic strain energy per unit

reference length, up to quadratic order is [12]

W =
1

2

[

Eb
(

κ2

1
+ κ2

2

)

+ Etκ2

3

+Es
(

ν2

1
+ ν2

2

)

+ Ee(ν3 − 1)2
]

, (6)

where Eb, Et, Es, Ee are stiffness in bending, twist, shear

and extension respectively, which may depend on s. If the

reference configuration is not straight but has nonzero initial

curvatures κr
i , then (6) still applies via the substitution

κi ← (κi − κr
i ). The constitutive relations for the internal

contact force n and moment m vectors are

n =
∑

i

nidi , ni =
∂W

∂νi

, (7)

m =
∑

i

midi , mi =
∂W

∂κi

. (8)

For a rod magnetized in the direction perpendicular to its

cross-section with magnetic moment per length µ(s), the

mechanical potential energy per length is

Um = −µ(s)d3(s) ·B , (9)

and the (energy) functional to be minimized by (r, q) is

S(r, q) =

L
∫

0

(W + Um + cuP ) ds , (10)

in which the constant cu is selected large. Common bound-

ary conditions are geometric at the proximal end r(0) = 0,
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q0(0) = 1, q(0) = 0 and an applied force or torque at the

distal end s = L. If there are other external conservative

forces or moments acting along the rod body or at the ends,

the potential energies corresponding to those can be added

to (10). The ODE’s describing the static equilibrium are

found by standard calculus of variations since (r, q) are

unconstrained except for the boundary conditions at s = 0.

Indeed, the weak form can be used directly. Symbolic com-

putation in Mathematicar is used for this purpose. These

equations were translated to Matlabr, calling Comsolr

FE functions to mesh the domain, to discretize via cubic

Hermite elements to maintain differentiability, and to solve

by repetitively using pure Newton’s method in a continuity

scheme. Comparison to standard 3D FEM indicated that

40-fold reduction in the total FE DOF is achieved without

sacrificing accuracy.

The stiffness parameters in (6) were estimated by exper-

iments for tube segments with uniform material and geo-

metric properties. All tests were done at body temperature

after allowing sufficient time for soaking in saline solution.

Extension stiffness Ee was estimated in pulling tests with

constant elongation rate. Viscoelastic behavior is evident

in Fig. 1. The standard 3-parameter spring–dashpot model

relating stress σ, strain ǫ and their time rates σ̇, ǫ̇

ǫ̇ =
σ̇ + E2

η
σ − E1E2

η
ǫ

E1 + E2

(11)

using viscous damping parameter η captures both creep and

stress relaxation behavior, although three parameters may

not be sufficient for quantitatively describing a particular

material. Since we are interested in statics, we fitted the

experimental data to the steady-state value of the ramp

response of force to elongation. The bending stiffness Eb

was estimated by attaching small magnets to one end of a

tube and deflecting it in a magnetostatic field. At the strain

range we were testing, the linearity of the response was

very good and Eb did not depend much on tube length,

as seen in Fig. 2. The twist stiffness Et was estimated by

rotating one end of a tube to a fixed angle and measuring

the torque at the other end by a precision torque meter.

Figure 3 indicates that for short tubes the deflection is going

outside the linear range. But for magnetic catheters torsional

deformation is fairly small, and the linear fit is sufficient

for our purposes. Estimating the shear stiffness Es is not

straightforward because creating a configuration with pure

shear deformation with constant strain requires a constant

body torque to be applied along the whole length of the

tube, not just at the boundaries, which is not practical.

Instead, a three-point bend test may be used which will

combine shear with planar bending and extension. Using

numerical optimization, Es may be estimated that fits the

FE simulation to the experimental data in a least-squares

sense.
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Fig. 1. Extension force (dyn) vs. strain (%) at various elongation rates
for catheter tube.
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Fig. 2. Magnetic bending torque (dyn–cm) vs. tip angle/length (rad/cm)
for tubes of length 3 cm (blue), 4.5 cm (green) and 6 cm (red); experimental
results (markers) and fitted lines (solid).
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Fig. 3. Twisting torque (dyn–cm) vs. tip angle/length (rad/cm) for tubes
of length 6 cm (blue), 2.6 cm (green); experimental results (markers) and
fitted lines (solid).
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III. CONCLUSION

For static models of magnetic catheters, the special

Cosserat rod-based FE model defined on the 1D domain

using arc length as the coordinate yields significant com-

putational savings compared to standard 3D FEM. Using

unit quaternions to represent rotational DOF combined with

a penalty term added to the mechanical potential energy

allows using commercial FE software without resorting to

special integration methods that must be employed with

rotation matrices. For polymer tubes used in catheters, siff-

ness parameters in bending, extension and twist have been

determined from experiments in the strain range required

for this application. To the best of our knowledge, there is

no standard experiment to determine the shear stiffness of a

tubular object and therefore this parameter may be estimated

by least-squares fitting of three-point bending data.
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